cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102712 Sum of largest parts of all compositions of n.

Original entry on oeis.org

1, 3, 8, 19, 43, 94, 202, 428, 899, 1875, 3890, 8036, 16544, 33962, 69552, 142149, 290017, 590814, 1202016, 2442706, 4958974, 10058216, 20384498, 41282346, 83549603, 168992081, 341627732, 690279026, 1394115072, 2814430326, 5679552630, 11457287926, 23104929222
Offset: 1

Views

Author

Vladeta Jovovic, Feb 05 2005

Keywords

Examples

			a(4) = 19 because we have (4), (3)1, 1(3), (2)2, (2)11, 1(2)1, 11(2) and (1)111; the largest parts, shown between parentheses, add up to 19.
		

Crossrefs

Column k=1 of A322428.

Programs

  • Maple
    G:=sum(n*(1-x)^2*x^n/((1-2*x+x^n)*(1-2*x+x^(n+1))),n=1..45): Gser:=series(G,x=0,40): seq(coeff(Gser,x^n),n=1..36); # Emeric Deutsch, Mar 29 2005
    # second Maple program:
    b:= proc(n, m, t) option remember;
          `if`(m=1, 1,
          `if`(n add(m*b(n, m, false), m=1..n):
    seq(a(n), n=1..40);  # Alois P. Heinz, Oct 21 2011
  • Mathematica
    nn=33;f[list_]:=Sum[list[[i]]i,{i,1,Length[list]}];Drop[Map[f,Transpose[Table[CoefficientList[Series[1/(1-(x-x^(k+1))/(1-x))-1/(1-(x-x^k)/(1-x)),{x,0,nn}],x],{k,1,nn}]]],1] (* Geoffrey Critzer, Apr 06 2014 *)

Formula

G.f.: Sum(n*(1-x)^2*x^n/((1-2*x+x^n)*(1-2*x+x^(n+1))), n=1..infinity).
G.f.: (1-x)/(1-2*x)*Sum(x^n/(1-2*x+x^n),n=1..infinity). - Vladeta Jovovic, Apr 28 2008

Extensions

More terms from Emeric Deutsch, Mar 29 2005