cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102753 Decimal expansion of (Pi^2)/2.

Original entry on oeis.org

4, 9, 3, 4, 8, 0, 2, 2, 0, 0, 5, 4, 4, 6, 7, 9, 3, 0, 9, 4, 1, 7, 2, 4, 5, 4, 9, 9, 9, 3, 8, 0, 7, 5, 5, 6, 7, 6, 5, 6, 8, 4, 9, 7, 0, 3, 6, 2, 0, 3, 9, 5, 3, 1, 3, 2, 0, 6, 6, 7, 4, 6, 8, 8, 1, 1, 0, 0, 2, 2, 4, 1, 1, 2, 0, 9, 6, 0, 2, 6, 2, 1, 5, 0, 0, 8, 8, 6, 7, 0, 1, 8, 5, 9, 2, 7, 6, 1, 1, 5, 9, 1, 2, 0, 1
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Feb 10 2005

Keywords

Comments

Also equals the area under the peak-shaped even function f(x)=x/sinh(x).
Proof: For the upper half of the integral, write f(x) = 2x*exp(-x)/(1-exp(-2x)) = sum_{k=1..infinity} 2x*exp(-(2k-1)x) and integrate term by term from zero to infinity. - Stanislav Sykora, Nov 01 2013
Volume of the 4-dimensional unit sphere; the volume of the n-dimensional unit sphere is Pi^(n/2)/gamma(n/2+1) (see n-ball link and A164103). - Rick L. Shepherd, Jun 22 2017
Pi^2/2 is the squared side-length of a square with diagonal Pi. - Wesley Ivan Hurt, Jan 28 2022

Examples

			4.9348022005446793094172454999380755676568497036203953132066746881100\ 224112096026215008867018592761159120129568870115720388....
		

References

  • J. Rivaud, Analyse, Séries, Equations différentielles, Mathématiques Supérieures et Spéciales, Premier Cycle Universitaire, Vuibert, 1981, Exercice 2, p. 135.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Middlesex, England: Penguin Books, 1986, p. 53.

Crossrefs

Programs

Formula

Equals psi_1(1/2), where psi_1(x) is the second logarithmic derivative of GAMMA(x).
Equals the volume of revolution of the sine or cosine curve for one half period, Integral_{0,Pi} Sin(x)^2 dx. - Robert G. Wilson v, Dec 15 2005
Equals Sum_{k >=1} 4^k/(k^2*binomial(2*k,k)) [Amdeberhan, Sprugnoli]. - R. J. Mathar, Sep 28 2007
Equals 4*Sum_{k >=1} 1/(2k-1)^2 [Wells].
From Peter Bala, Nov 05 2019: (Start)
Pi^2/2 = Integral_{x = 0..inf} cosh(x)*x^2/sinh(x)^2 dx.
Pi^2/2 = 5*sum_{k >= 0} binomial(2*k,k)(-1/16)^k*1/(2*k+1)^2.
Pi^2/2 = 10*Integral_{x = 0..1/2} 1/x*log(x + sqrt(1 + x^2)) dx. (End)
Pi^2/20 = 0.1 * Pi^2/2 = Sum_{k>=1} 1/A026424(k)^2. - Amiram Eldar, Aug 17 2020
Conjecture: Pi^2/2 = Sum_{n = -oo..oo} ( cos(Pi*sqrt(n^2+1)) - cos(Pi*n) ) (using the Eisenstein summation convention). - Peter Bala, Oct 08 2021
Pi^2/2 = Integral_{x = -oo..oo} x/sinh(x) dx (see Rivaud reference). - Bernard Schott, Jan 28 2022