cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102755 Number of asymmetric (or identity) oriented trees with n nodes.

Original entry on oeis.org

1, 1, 1, 4, 10, 37, 135, 522, 2060, 8430, 35115, 149286, 644456, 2821835, 12503878, 56001856, 253174451, 1154179790, 5301178673, 24513058220, 114042743290, 533510321377, 2508491383101, 11849321038092, 56211286929146, 267707017974770, 1279602152054934
Offset: 1

Views

Author

Vladeta Jovovic, Feb 10 2005

Keywords

Crossrefs

Cf. A005753 = number of asymmetric (or identity) rooted oriented trees with n nodes.
Cf. A246312.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(2*b(i-1$2), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n-1$2)-add(b(j-1$2)*b(n-j-1$2), j=1..n-1):
    seq(a(n), n=1..35);  # Alois P. Heinz, Aug 01 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[2*b[i-1, i-1], j]*b[n - i*j, i-1], {j, 0, n/i}]]] // FullSimplify; a[n_] := b[n-1, n-1] - Sum[b[j-1, j-1]*b[n-j-1, n-j-1], {j, 1, n-1}]; Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Feb 24 2015, after Alois P. Heinz *)

Formula

G.f.: B(x)-B(x)^2, where B(x) is g.f. for A005753.
a(n) ~ c * d^n / n^(5/2), where d = A246312 = 5.249032491228170579164952216..., c = 0.17807103914078424643862998... . - Vaclav Kotesovec, Aug 25 2014