A102771 Decimal expansion of area of a regular pentagon with unit edge length.
1, 7, 2, 0, 4, 7, 7, 4, 0, 0, 5, 8, 8, 9, 6, 6, 9, 2, 2, 7, 5, 9, 0, 1, 1, 9, 7, 7, 3, 8, 8, 6, 0, 9, 5, 9, 9, 4, 0, 7, 3, 7, 4, 1, 7, 0, 0, 1, 0, 1, 9, 8, 3, 2, 9, 2, 0, 7, 0, 9, 4, 7, 0, 7, 0, 2, 3, 8, 6, 8, 9, 9, 2, 2, 0, 8, 9, 6, 6, 2, 3, 1, 3, 3, 2, 4, 4, 1, 2, 4, 1, 3, 8, 7, 5, 8, 7, 7, 4
Offset: 1
Examples
1.720477400588966922759011977...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Pentagon
- Index entries for algebraic numbers, degree 4
Crossrefs
Programs
-
Mathematica
RealDigits[(5/4)*Sqrt[GoldenRatio^3/Sqrt[5]], 10, 50][[1]] (* G. C. Greubel, Jul 03 2017 *)
-
PARI
5/(4*tan(Pi/5)) \\ Michel Marcus, Mar 25 2015
Formula
Equals sqrt(25 + 10*sqrt(5)) / 4.
Equals (3*phi+1)*sqrt(3-phi) with the golden section phi = (1 + sqrt(5))/2. - Wolfdieter Lang, Jan 25 2013
Equals 5/(4*tan(Pi/5)). - Michel Marcus, Mar 25 2015
Equals (5/4)*sqrt(phi^3/sqrt(5)). - G. C. Greubel, Jul 03 2017
Extensions
Corrected the title. - Stanislav Sykora, Apr 12 2015