cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A104246 Minimal number of tetrahedral numbers (A000292(k) = k(k+1)(k+2)/6) needed to sum to n.

Original entry on oeis.org

1, 2, 3, 1, 2, 3, 4, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 2, 3, 4, 5, 3, 1, 2, 3, 4, 2, 2, 3, 4, 3, 3, 2, 3, 4, 4, 3, 3, 4, 5, 4, 4, 2, 1, 2, 3, 3, 2, 3, 4, 4, 3, 3, 2, 3, 4, 4, 2, 3, 4, 5, 3, 3, 2, 3, 4, 4, 3, 4, 5, 5, 1, 2, 3, 4, 2, 3, 3, 2, 3, 4, 2, 3, 3, 4, 3, 4, 4, 3, 4
Offset: 1

Views

Author

Eric W. Weisstein, Feb 26 2005

Keywords

Comments

According to Dickson, Pollock conjectures that a(n) <= 5 for all n. Watson shows that a(n) <= 8 for all n, and Salzer and Levine show that a(n) <= 5 for n <= 452479659. - N. J. A. Sloane, Jul 15 2011
Possible correction of the first comment by Sloane 2011: it appears to me from the linked reference by Salzer and Levine 1968 that 452479659 is instead the upper limit for sums of five Qx = Tx + x, where Tx are the tetrahedral numbers we want. They also mention an upper limit for sums of five Tx, which is: a(n) <= 5 for n <= 276976383. - Ewoud Dronkert, May 30 2024
If we use the greedy algorithm for this, we get A281367. - N. J. A. Sloane, Jan 30 2017
Could be extended with a(0) = 0, in analogy to A061336. Kim (2003, first row of table "d = 3" on p. 73) gives max {a(n)} = 5 as a "numerical result", but the value has no "* denoting exact values" (see Remark at end of paper), which means this could be incorrect. - M. F. Hasler, Mar 06 2017, edited Sep 22 2022

References

  • Dickson, L. E., History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Dover, 1952, see p. 13.

Crossrefs

Cf. A000292 (tetrahedral numbers, indices of 1s), A102795 (indices of 2s), A102796 (indices of 3s), A102797 (indices of 4s), A000797 (numbers that need 5 tetrahedral numbers).
See also A102798-A102806, A102855-A102858, A193101, A193105, A281367 (the "triangular nachos" numbers).
Cf. A061336 (analog for triangular numbers).

Programs

  • Maple
    tet:=[seq((n^3-n)/6,n=1..20)];
    LAGRANGE(tet,8, 120); # the LAGRANGE transform of a sequence is defined in A193101. - N. J. A. Sloane, Jul 15 2011
    # alternative
    N := 10000:
    L := [seq(0,i=1..N)] :
    # put 1's where tetrahedral numbers reside
    for i from 1 to N do
        Aj := A000292(i) ;
        if Aj <= N then
            L := subsop(Aj=1,L) ;
        end if;
    end do:
    for a from 1 do
        # select positions of a's, skip forward by all available Aj and
        # if that addresses a not-yet-set position in the array put a+1 there.
        for i from 1 to N do
            if op(i,L) =a then
                for j from 1 do
                    Aj := A000292(j) ;
                    if i+Aj <=N and op(i+Aj,L) = 0 then
                        L := subsop(i+Aj=a+1,L) ;
                    end if;
                    if i +Aj > N then
                        break ;
                    end if;
                end do:
            end if;
        end do:
        # if all L[] are non-zero, terminate the loop
        allset := true;
        for i from 1 to N do
            if op(i,L) = 0 then
                allset := false ;
                break ;
            end if;
        end do:
        if allset then
            break ;
        end if;
    end do:
    seq( L[i],i=1..N) ; # R. J. Mathar, Jun 06 2025
  • PARI
    \\ available on request. - M. F. Hasler, Mar 06 2017
    
  • PARI
    seq(N) = {
      my(a = vector(N, k, 8), T = k->(k*(k+1)*(k+2))\6);
      for (n = 1, N,
        my (k1 = sqrtnint((6*n)\8, 3), k2 = sqrtnint(6*n, 3));
        while(n < T(k2), k2--); if (n == T(k2), a[n] = 1; next());
        for (k = k1, k2, a[n] = min(a[n], a[n - T(k)] + 1))); a;
    };
    seq(102)  \\ Gheorghe Coserea, Mar 14 2017

Extensions

Edited by N. J. A. Sloane, Jul 15 2011
Edited by M. F. Hasler, Mar 06 2017

A102795 Let f(n) = A104246(n) be the minimal number of nonzero tetrahedral numbers that add to n; sequence gives numbers n for which f(n) = 2.

Original entry on oeis.org

2, 5, 8, 11, 14, 21, 24, 30, 36, 39, 40, 45, 55, 57, 60, 66, 70, 76, 85, 88, 91, 94, 104, 112, 119, 121, 124, 130, 140, 155, 166, 168, 169, 175, 176, 185, 200, 204, 221, 224, 230, 240, 249, 255, 276, 285, 287, 290, 296, 304, 306, 321, 330, 340, 342
Offset: 1

Views

Author

Jud McCranie, Feb 26 2005

Keywords

Crossrefs

A000797 Numbers that are not the sum of 4 tetrahedral numbers.

Original entry on oeis.org

17, 27, 33, 52, 73, 82, 83, 103, 107, 137, 153, 162, 217, 219, 227, 237, 247, 258, 268, 271, 282, 283, 302, 303, 313, 358, 383, 432, 437, 443, 447, 502, 548, 557, 558, 647, 662, 667, 709, 713, 718, 722, 842, 863, 898, 953, 1007, 1117, 1118
Offset: 1

Views

Author

Keywords

Comments

It is an open problem of long standing ("Pollock's Conjecture") to show that this sequence is finite.
More precisely, Salzer and Levine conjecture that every number is the sum of at most 5 tetrahedral numbers and in fact that there are exactly 241 numbers (the terms of this sequence) that require 5 tetrahedral numbers, the largest of which is 343867.

References

  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, p. 22.
  • S. S. Skiena, The Algorithm Design Manual, Springer-Verlag, 1998, pp. 43-45 and 135-136.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000292 (tetrahedral numbers), A102795, A102796, A102797, A104246, A102800 (complement).

Extensions

Entry revised Feb 25 2005

A343491 Number of representations of n! as a sum of 3 tetrahedral numbers (A000292).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 1, 3, 5, 2, 3, 6, 5, 8, 8, 7, 2, 7, 8, 3, 11, 2, 2
Offset: 1

Views

Author

Altug Alkan, Apr 17 2021

Keywords

Comments

Conjecture I: There are infinitely many n such that a(n) >= 1.
Conjecture II: Natural density of numbers n such that a(n) >= 1 is 1.
Conjecture III: Numbers n such that a(n) = 0 is a finite sequence.
Conjecture IV: a(n) >= 1 for all n.
See Links section for some solutions.

Examples

			a(4) = 2 because 4! = 0 + 4 + 20 = 4 + 10 + 10.
a(24) = 2 because 24! = f(11393630) + f(118661018) + f(127041924) = f(81298034) + f(61098204) + f(143537134) where f = A000292.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Solve[{i*(i + 1)*(i + 2) + j*(j + 1)*(j + 2) + k*(k + 1)*(k + 2) == 6*n!, i >= 0, j >= 0, k >= 0, i <= j, j <= k, k < (6*n!)^(1/3)}, Integers]], {n, 1, 10}] (* Vaclav Kotesovec, Apr 19 2021 *)
Showing 1-4 of 4 results.