A102806 Numbers that are not the sum of distinct tetrahedral numbers.
2, 3, 6, 7, 8, 9, 12, 13, 16, 17, 18, 19, 22, 23, 26, 27, 28, 29, 32, 33, 37, 38, 41, 42, 43, 44, 47, 48, 51, 52, 53, 54, 58, 62, 63, 64, 68, 72, 73, 74, 75, 78, 79, 82, 83, 93, 97, 100, 103, 107, 110, 113, 117, 127, 128, 132, 136, 137, 138, 142, 146, 147, 148
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..112
- Robert Israel, Proof that the b-file is full
Programs
-
Maple
N:= 100000: # to test all n <= N ft:= t -> t*(t+1)*(t+2)/6: tets:= map(ft, [$1..floor((6*N)^(1/3))]): f:= proc(n,tmax) option remember; local res, s; if member(n, tets) and n < tmax then return false fi; for s in tets while s < min(n, tmax) do if not procname(n-s,s) then return false fi od; true end proc: select(f, [$1..N],infinity); # Robert Israel, Dec 29 2019
-
Mathematica
M = 1000; (* to test all n <= M *) ft[t_] := t*(t+1)*(t+2)/6; tets = Map[ft, Range[Floor[(6*M)^(1/3)]]]; f[n_, tMax_] := f[n, tMax] = Module[{res, s}, If[MemberQ[tets, n] && n < tMax, Return[False]]; For[i = 1, s = tets[[i]]; i <= Length[tets] && s < Min[n, tMax], i++, If[!f[n-s, s], Return[False]]]; True]; Select[Range[M], f[#, Infinity]&] (* Jean-François Alcover, Sep 15 2022, after Robert Israel *)
Comments