cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A159922 Least index m such that the five numbers 2*prime(m+k) + 3^n, k=0 to 4, are five consecutive primes.

Original entry on oeis.org

643266, 8813528, 1644953, 440421, 2826655, 1339785, 2775232, 988180, 196973, 643136, 4122122, 3477939, 182124, 6195602, 130854, 4937610, 2725523, 6118932, 231670, 478208, 2405748, 3913626, 1033788, 2945487, 22952758, 7168835, 15528738, 2753214, 2407038, 37795639
Offset: 1

Views

Author

Pierre CAMI, Apr 26 2009

Keywords

Examples

			For n=15, prime(m=130854) = 1739401 starts the prime sequence 1739401, 1739411, 1739417, 1739443, 1739447 of five consecutive primes.
With 3^n = 3^15 = 14348907, the five numbers 17827709 = 2*1739401+14348907, 17827729 = 2*1739411 + 14348907, 17827741 = 2*1739417 + 14348907, 17827793 = 2*1739443 + 14348907, 17827801 = 2*1739447 + 14348907 are consecutive primes, and m = 130854 is the smallest prime index of this kind, so a(n=15) = 130854.
		

Programs

  • PARI
    a(n) = {my(m=1, p=[2, 3, 5, 7, 11], q, x=3^n); while(ispseudoprime(q=(2*p[1]+x)) + sum(k=2, 5, (q=nextprime(q+1))==2*p[k]+x) < 5, m++; p=concat(p[2..5], nextprime(p[5]+1))); m; } \\ Jinyuan Wang, Mar 20 2020

Formula

a(1) = A102810(1) = A102811(5) = A089009(11). - R. J. Mathar, Apr 28 2009

Extensions

Edited by R. J. Mathar, Apr 28 2009
Replaced the wrong value 14348916 by 14348907 (3^15=14348907). - Pierre CAMI, May 09 2009
More terms from Jinyuan Wang, Mar 20 2020
Showing 1-1 of 1 results.