cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A215170 Primes congruent to {2, 5} mod 19.

Original entry on oeis.org

2, 5, 43, 59, 97, 157, 173, 211, 233, 271, 347, 401, 439, 461, 499, 613, 727, 743, 857, 971, 1009, 1031, 1069, 1123, 1237, 1259, 1297, 1373, 1427, 1487, 1579, 1601, 1693, 1753, 1867, 1997, 2111, 2339, 2377, 2399, 2437, 2551, 2719, 2741, 2833, 2909, 2969
Offset: 1

Views

Author

Vincenzo Librandi, Aug 06 2012

Keywords

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(3000) | p mod 19 in {2, 5} ];
  • Mathematica
    Select[Prime[Range[3000]],MemberQ[{2,5},Mod[#,19]]&]

A322923 Primes of the form 3*p + 4, where p is a prime.

Original entry on oeis.org

13, 19, 37, 43, 61, 73, 97, 127, 163, 181, 223, 241, 271, 307, 313, 331, 397, 421, 457, 523, 541, 547, 577, 601, 673, 691, 727, 757, 811, 853, 883, 937, 997, 1051, 1063, 1123, 1153, 1171, 1231, 1297, 1303, 1321, 1531, 1567, 1627, 1693, 1783, 1801
Offset: 1

Views

Author

Vincenzo Librandi, Mar 12 2019

Keywords

Crossrefs

Programs

  • GAP
    P:=Filtered([1..1000],IsPrime);;
    a:=Filtered(List(P,i->3*i+4),k->IsPrime(k)); # Muniru A Asiru, Mar 23 2019
    
  • Magma
    [a: p in PrimesUpTo(600) | IsPrime(a) where a is 3*p+4];
    
  • Maple
    select(isprime,[3*ithprime(p)+4$p=1..120]); # Muniru A Asiru, Mar 23 2019
  • Mathematica
    Select[Table[p=Prime[n];3p+4,{n,85}],PrimeQ]
  • PARI
    terms(n) = my(x=0, i=0); forprime(p=1, , if(i >= n, break); x=3*p+4; if(ispseudoprime(x), print1(x, ", "); i++))
    /* Print initial 50 terms as follows: */
    terms(50) \\ Felix Fröhlich, Mar 23 2019
Showing 1-2 of 2 results.