cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102886 Decimal expansion of Serret's integral: Integral_{x=0..1} log(x+1)/(x^2+1) dx.

Original entry on oeis.org

2, 7, 2, 1, 9, 8, 2, 6, 1, 2, 8, 7, 9, 5, 0, 2, 6, 6, 3, 1, 2, 5, 8, 6, 1, 1, 2, 2, 7, 9, 7, 0, 1, 7, 4, 3, 4, 1, 7, 3, 2, 2, 9, 6, 2, 5, 4, 6, 1, 6, 0, 7, 8, 6, 7, 9, 0, 7, 2, 4, 4, 0, 6, 6, 4, 9, 2, 8, 8, 5, 6, 8, 6, 4, 7, 0, 9, 2, 7, 4, 8, 3, 0, 3, 7, 9, 1, 1, 2, 0, 2, 0, 1, 3, 3, 2, 8, 7, 8, 1, 3, 2
Offset: 0

Views

Author

Eric W. Weisstein, Jan 15 2005

Keywords

Comments

Named after the French mathematician Joseph-Alfred Serret (1819-1885). - Amiram Eldar, May 30 2021

Examples

			0.27219826128795026631258611227970174341732296254616...
		

References

  • Eric Billault et al, MPSI- Khôlles de Maths, Ellipses, 2012, exercice 11.10, pp. 252-264.
  • L. B. W. Jolley, Summation of Series, Dover (1961), Eq. (94) on page 18.
  • I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 4th edition, 4.291.8.

Crossrefs

Cf. A086054 (Pi*log(2)).

Programs

Formula

Equals Integral_{x=0..1} arctan(x)/(x+1) dx. - Jean-François Alcover, Mar 25 2013
Equals Integral_{x=0..Pi/4} log(tan(x)+1) dx [see link J.-A. Serret and reference Billault]. - Bernard Schott, Apr 23 2020
Equals Pi*log(2)/8 = Sum_{n>0} (-1)^(n+1) * H(2n) / (2n+1) = H(2)/3 - H(4)/5 + H(6)/7 -... with H(n) = Sum_{j=1..n} 1/j the harmonic numbers. [Jolley]; improved by Bernard Schott, Apr 24 2020
Equals -Integral_{x=0..1} x*arccos(x)*log(x) dx. - Amiram Eldar, May 30 2021
Equals Integral_{x=0..log(2)} x/(e^x + 2*e^(-x) - 2) dx = -Integral_{x=0..Pi/2} log(sin(x))*sin(x)/sqrt(1+sin(x)^2) dx = Integral_{x=0..1} log((1 - x)/x)/(1 + x^2) dx = Integral_{x=0..Pi/4} x/((cos(x) + sin(x))*cos(x)) dx = Integral_{x=0..Pi/4} log(cot(x) - 1) dx (see Shamos). - Stefano Spezia, Nov 13 2024