A102912 Decimal expansion of a close approximation to the Ramanujan constant.
2, 6, 2, 5, 3, 7, 4, 1, 2, 6, 4, 0, 7, 6, 8, 7, 4, 3, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 2, 5, 1, 1, 2, 3, 8, 7, 5, 9, 3, 6, 7, 9, 9, 8, 0, 0, 9, 5, 4, 4, 1, 7, 3, 6, 7, 9, 1, 0, 2, 2, 7, 7, 1, 6, 6, 3, 5, 3, 5, 7, 0, 9, 1, 7, 6, 1, 3, 7, 3, 3, 3, 4, 1, 0, 0, 6, 2, 8, 1, 0, 4, 9, 2, 7, 6, 5, 1, 0, 4, 2, 4, 8, 7
Offset: 18
Examples
262537412640768743.999999999999251123875936799800954417367910227716...
Links
- G. C. Greubel, Table of n, a(n) for n = 18..10000
- M. Kontsevich and D. Zagier, Periods, Institut des Hautes Etudes Scientifiques 2001 IHES/M/01/22
- Eric Weisstein's World of Mathematics, Ramanujan Constant
Crossrefs
Cf. A060295.
Programs
-
Mathematica
RealDigits[ Root[ #^3 - 6#^2 + 4# - 2 &, 1]^24 - 24, 10, 111][[1]]
Formula
Equals: Real root of x^3 - 6*x^2 + 4*x - 2 = 0, being x_{real} = (6 + (3*(45 + sqrt(489)))^(1/3) + (3*(45 - sqrt(489)))^(1/3))/3 = 5.31863, evaluated as (x_{real})^24 - 24. - G. C. Greubel, Feb 15 2018
Comments