cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A102916 Triangle, read by rows, where the antidiagonals are formed by interleaving the rows of triangle A102098 with the rows of its matrix square (A102920).

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 3, 8, 9, 4, 7, 40, 27, 16, 5, 36, 152, 189, 64, 25, 6, 139, 1128, 999, 576, 125, 36, 7, 1036, 6200, 9720, 3904, 1375, 216, 49, 8, 5711, 61120, 69687, 47040, 11375, 2808, 343, 64, 9, 56355, 442552, 857466, 416704, 163500, 27432, 5145, 512
Offset: 0

Views

Author

Paul D. Hanna, Jan 21 2005

Keywords

Comments

Column 0 is A102917, the interleaving of A082162 with A102921. Under matrix cube, triangle A102098 shifts each column up 1 row.

Examples

			Rows begin:
[1],
[1,2],
[1,4,3],
[3,8,9,4],
[7,40,27,16,5],
[36,152,189,64,25,6],
[139,1128,999,576,125,36,7],
[1036,6200,9720,3904,1375,216,49,8],
[5711,61120,69687,47040,11375,2808,343,64,9],...
The antidiagonals are formed by interleaving the
rows of triangle A102098:
[1],
[1,2],
[7,8,3],
[139,152,27,4],...
with the rows of the matrix square of A102098,
which is triangle A102920:
[1],
[3,4],
[36,40,9],
[1036,1128,189,16],...
G.f. for Column 0 (A102917): 1 = 1*(1-x) + 1*x*(1-x)
+ 1*x^2*(1-x)(1-2x) + 3*x^3*(1-x)(1-2x)
+ 7*x^4*(1-x)(1-2x)(1-3x) + 36*x^5*(1-x)(1-2x)(1-3x) +...
+ A082162(n)*x^(2n)*(1-x)(1-2x)*..*(1-(n+1)x)
+ A102921(n)*x^(2n+1)*(1-x)(1-2x)*..*(1-(n+1)x) + ...
G.f. for Column 1 (A102918): 2 = 2*(1-2x) + 4*x*(1-2x)
+ 8*x^2*(1-2x)(1-3x) + 40*x^3*(1-2x)(1-3x)
+ 152*x^4*(1-2x)(1-3x)(1-4x) + 1128*x^5*(1-2x)(1-3x)(1-4x) +...
+ T(2n+1,1)*x^(2n)*(1-2x)(1-3x)*..*(1-(n+2)x)
+ T(2n+2,1)*x^(2n+1)*(1-2x)(1-3x)*..*(1-(n+2)x) + ...
		

Crossrefs

Programs

  • PARI
    {T(n,k)=if(n
    				

Formula

G.f. for column k: T(k, k) = k+1 = Sum_{n>=0} T(n+k, k)*x^n*Product_{j=k..[n/2+k]} (1-(j+1)*x).

A102921 Column 0 of triangle A102920, which equals the matrix square of A102098.

Original entry on oeis.org

1, 3, 36, 1036, 56355, 5045370, 679409158, 129195427716, 33114233390505, 11038606786054201, 4652371578279864792, 2423023045813285312020, 1530233703568825263174101, 1153422053136775523883308988
Offset: 0

Views

Author

Paul D. Hanna, Jan 21 2005

Keywords

Comments

Equals the bisection of A102917. Triangle A102098 shifts each column up 1 row under matrix cube.

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0,2,polcoeff(2-sum(k=0,n-1,a(k)*x^k*prod(j=2,k\2+2,1-j*x +x*O(x^n))),n))} /* at even-indices n=0,2,4,.. */

A102922 Column 1 of triangle A102920, which equals the matrix square of A102098.

Original entry on oeis.org

0, 4, 40, 1128, 61120, 5466320, 735847800, 139910204080, 35858685086352, 11953187179149408, 5037776918810353960, 2623732639426967662648, 1656984556235159516822400, 1248959074762601252295551168
Offset: 0

Views

Author

Paul D. Hanna, Jan 21 2005

Keywords

Comments

Equals the odd bisection of A102917. Triangle A102098 shifts each column up 1 row under matrix cube.

Crossrefs

Programs

  • PARI
    {a(n)=local(A=matrix(2,2),B);A[1,1]=1; for (m=2,n+1,B=matrix(m,m);for (i=1,m, for (j=1,i, if(j==i,B[i,j]=j,if(j==1,B[i,j]=(A^3)[i-1,1], B[i,j]=(A^3)[i-1,j]));));A=B);return((A^2)[n+1,2])}
Showing 1-3 of 3 results.