A103127 Numbers congruent to {-1, 1, 3, 5} mod 16.
1, 3, 5, 15, 17, 19, 21, 31, 33, 35, 37, 47, 49, 51, 53, 63, 65, 67, 69, 79, 81, 83, 85, 95, 97, 99, 101, 111, 113, 115, 117, 127, 129, 131, 133, 143, 145, 147, 149, 159, 161, 163, 165, 175, 177, 179, 181, 191, 193, 195, 197, 207, 209, 211, 213, 223, 225, 227, 229, 239, 241
Offset: 1
Links
- David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp [pdf, ps].
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
- Index entries for sequences which agree for a long time but are different
Programs
-
Haskell
a103127 n = a103127_list !! (n-1) a103127_list = [x | x <- [1..], x `mod` 16 `elem` [1,3,5,15]] -- Reinhard Zumkeller, Jul 21 2012
-
Mathematica
Select[Range[300],MemberQ[{1,3,5,15},Mod[#,16]]&] (* Harvey P. Dale, Aug 10 2019 *)
Formula
a(n) = 2*A047527(n) + 1.
From R. J. Mathar, Aug 30 2008: (Start)
O.g.f.: x*(1 + 2*x + 2*x^2 + 10*x^3 + x^4)/((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-4) + 16. (End)
a(n) = 2*A047476(n+1) - 1. - Philippe Deléham, Dec 01 2016
Comments