cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103131 The product of the residues in [1,n] relatively prime to n, taken modulo n.

Original entry on oeis.org

0, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1
Offset: 1

Views

Author

Eric W. Weisstein, Jan 23 2005

Keywords

Comments

Old name was: Minimal residue (in absolute value) of A001783(n) (mod n).
If the positive representation for integers modulo n is used this is A160377. Here the symmetric (or minimal) representation for the integers modulo n is used.
From Gauss's generalization of Wilson's theorem (see Weisstein link) it follows that, for n>1, a(n) = -1 if and only if there exists a primitive root modulo n (cf. the Hardy and Wright reference, Theorem 129. p. 102). (Adapted from a comment by Vladimir Shevelev in A001783). - Peter Luschny, Oct 20 2012

Examples

			The residues in [1, 22] relatively prime to 22 are [1, 3, 5, 7, 9, 13, 15, 17, 19, 21] and the product of those residues is -1 modulo 22.
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, Theorem 129, p. 102.

Crossrefs

Programs

Formula

For n>2, a(n)=-1 if A060594(n)=2, or equivalently if n is in A033948; otherwise a(n)=1. - Max Alekseyev, May 26 2009; edited by Peter Luschny, May 25 2017.
a(n) = Gauss_factorial(n, n) modulo n. (Definition of the Gauss factorial in A216919.) - Peter Luschny, Oct 20 2012
For n > 2, a(n) = (-1)^A211487(n). (See Max Alekseyev's formula above.) - Antti Karttunen, Aug 22 2017

Extensions

Definition rewritten by Max Alekseyev, May 26 2009
New name from Peter Luschny, Oct 20 2012
a(2) set to 1 by Peter Luschny, May 25 2017