A103136 Inverse of the Delannoy triangle.
1, -1, 1, 2, -3, 1, -6, 10, -5, 1, 22, -38, 22, -7, 1, -90, 158, -98, 38, -9, 1, 394, -698, 450, -194, 58, -11, 1, -1806, 3218, -2126, 978, -334, 82, -13, 1, 8558, -15310, 10286, -4942, 1838, -526, 110, -15, 1, -41586, 74614, -50746, 25150, -9922, 3142, -778, 142, -17, 1, 206098, -370610, 254410, -129050
Offset: 0
Examples
From _Paul Barry_, Apr 29 2009: (Start) Triangle begins 1; -1, 1; 2, -3, 1; -6, 10, -5, 1; 22, -38, 22, -7, 1; -90, 158, -98, 38, -9, 1; 394, -698, 450, -194, 58, -11, 1; Production matrix is -1, 1, 1, -2, 1, -1, 2, -2, 1, 1, -2, 2, -2, 1, -1, 2, -2, 2, -2, 1 The unsigned triangle has production matrix 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1 (End)
Programs
-
SageMath
def A103136(dim): # Returns a triangle with 'dim' rows M = matrix([[simplify(hypergeometric([-n, n-k], [1], 2)) for n in range(k+1)] + [0]*(dim-k-1) for k in range(dim)]) return [row[:n+1] for n, row in enumerate(M.inverse())] A103136(9) # Peter Luschny, Nov 16 2023
Formula
Riordan array (1-f(x), f(x)) with f(x) = xS(-x), S(x) the g.f. of the large Schroeder numbers A006318. Equivalent to Riordan array (g(x), 1-g(x)) where g(x) = (3+x-sqrt(1+6x+x^2))/2.
G.f.: 1/(1 + (x - xy)/(1 + x/(1 + 2x/(1 + x/(1 + 2x/(1+... (continued fraction). - Paul Barry, Apr 29 2009
Comments