A008328 Number of divisors of prime(n)-1.
1, 2, 3, 4, 4, 6, 5, 6, 4, 6, 8, 9, 8, 8, 4, 6, 4, 12, 8, 8, 12, 8, 4, 8, 12, 9, 8, 4, 12, 10, 12, 8, 8, 8, 6, 12, 12, 10, 4, 6, 4, 18, 8, 14, 9, 12, 16, 8, 4, 12, 8, 8, 20, 8, 9, 4, 6, 16, 12, 16, 8, 6, 12, 8, 16, 6, 16, 20, 4, 12, 12, 4, 8, 12, 16, 4, 6, 18, 15, 16, 8, 24, 8
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Karl Prachar, Über die Anzahl der Teiler einer natürlichen Zahl, welche die Form p-1 haben, Monatshefte für Mathematik, Vol. 59 (1955), pp. 91-97.
- Eric Weisstein's World of Mathematics, Cyclotomic Polynomial.
Programs
-
Maple
for i from 1 to 500 do if isprime(i) then print(tau(i-1)); fi; od; A008328 := proc(n) numtheory[tau](ithprime(n)-1) ; end proc: # R. J. Mathar, Oct 30 2015
-
Mathematica
DivisorSigma[0,#-1]&/@Prime[Range[90]] (* Harvey P. Dale, Dec 08 2011 *)
-
PARI
a(n) = numdiv(prime(n)-1); \\ Michel Marcus, Feb 25 2021
Formula
From Amiram Eldar, Apr 16 2024: (Start)
Formulas from Prachar (1955):
Sum_{prime(n) < x} a(n) = x * log(log(x)) + B*x + O(x/log(x)), where B is a constant.
There is a constant c > 0 such that for infinitely many values of n we have a(n) > exp(c * log(prime(n))/log(log(prime(n)))). (End)
Comments