cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103215 Numbers congruent to {1, 2, 5, 10, 13, 17} mod 24.

Original entry on oeis.org

1, 2, 5, 10, 13, 17, 25, 26, 29, 34, 37, 41, 49, 50, 53, 58, 61, 65, 73, 74, 77, 82, 85, 89, 97, 98, 101, 106, 109, 113, 121, 122, 125, 130, 133, 137, 145, 146, 149, 154, 157, 161, 169, 170, 173, 178, 181, 185, 193, 194, 197, 202, 205, 209, 217, 218, 221, 226
Offset: 1

Views

Author

Ralf Stephan, Jan 28 2005

Keywords

Crossrefs

Union of A008784 and A103216.
Cf. A054895.

Programs

  • Haskell
    a103215 n = a103215_list !! (n-1)
    a103215_list = [1,2,5,10,13,17] ++ map (+ 24) a103215_list
    -- Reinhard Zumkeller, Jul 05 2013
    
  • Magma
    [n : n in [0..300] | n mod 24 in [1, 2, 5, 10, 13, 17]]; // Wesley Ivan Hurt, Jul 22 2016
  • Maple
    A103215:=n->24*floor(n/6)+[1, 2, 5, 10, 13, 17][(n mod 6)+1]: seq(A103215(n), n=0..100); # Wesley Ivan Hurt, Jul 22 2016
  • Mathematica
    Select[Range[300], MemberQ[{1,2,5,10,13,17}, Mod[#,24]]&] (* or *) LinearRecurrence[{1,0,0,0,0,1,-1}, {1,2,5,10,13,17,25}, 60] (* Harvey P. Dale, Feb 19 2015 *)

Formula

G.f.: x*(1+x+3*x^2+5*x^3+3*x^4+4*x^5+7*x^6) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Jul 02 2011
a(1)=1, a(2)=2, a(3)=5, a(4)=10, a(5)=13, a(6)=17, a(7)=25, a(n) = a(n-1)+ a(n-6)-a(n-7) for n>7. - Harvey P. Dale, Feb 19 2015
From Wesley Ivan Hurt, Jul 22 2016: (Start)
a(n) = a(n-6) + 24 for n>6.
a(n) = (12*n - 18 + cos(n*Pi/3) - 3*cos(2*n*Pi/3) - cos(n*Pi) + 2*sqrt(3)*sin(n*Pi/3) + 2*sqrt(3)*sin(2*n*Pi/3))/3.
a(6k) = 24k-7, a(6k-1) = 24k-11, a(6k-2) = 24k-14, a(6k-3) = 24k-19, a(6k-4) = 24k-22, a(6k-5) = 24k-23. (End)