A103224 Norm of the totient function phi(n) for Gaussian integers. See A103222 and A103223 for the real and imaginary parts.
1, 2, 4, 8, 8, 8, 36, 32, 36, 16, 100, 32, 80, 72, 32, 128, 160, 72, 324, 64, 144, 200, 484, 128, 200, 160, 324, 288, 520, 64, 900, 512, 400, 320, 288, 288, 936, 648, 320, 256, 1088, 288, 1764, 800, 288, 968, 2116, 512, 1764, 400, 640, 640, 2000, 648, 800, 1152
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Programs
-
Mathematica
phi[z_] := Module[{f, k, prod}, If[Abs[z]==1, z, f=FactorInteger[z, GaussianIntegers->True]; If[Abs[f[[1, 1]]]==1, k=2; prod=f[[1, 1]], k=1; prod=1]; Do[prod=prod*(f[[i, 1]]-1)f[[i, 1]]^(f[[i, 2]]-1), {i, k, Length[f]}]; prod]]; Abs[Table[phi[n], {n, 100}]]^2
-
PARI
\\ See A103222 CEulerPhi(z)={my(f=factor(z,I)); prod(i=1, #f~, my([p,e]=f[i,]); if(norm(p)==1, p^e, (p-1)*p^(e-1)))} a(n)=norm(CEulerPhi(n)); \\ Andrew Howroyd, Aug 03 2018
Comments