cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103224 Norm of the totient function phi(n) for Gaussian integers. See A103222 and A103223 for the real and imaginary parts.

Original entry on oeis.org

1, 2, 4, 8, 8, 8, 36, 32, 36, 16, 100, 32, 80, 72, 32, 128, 160, 72, 324, 64, 144, 200, 484, 128, 200, 160, 324, 288, 520, 64, 900, 512, 400, 320, 288, 288, 936, 648, 320, 256, 1088, 288, 1764, 800, 288, 968, 2116, 512, 1764, 400, 640, 640, 2000, 648, 800, 1152
Offset: 1

Views

Author

T. D. Noe, Jan 26 2005

Keywords

Comments

See A103222 for definitions.
Multiplicative because the totient function on Gaussian integers is multiplicative and the norm is completely multiplicative. - Andrew Howroyd, Aug 03 2018

Crossrefs

Programs

  • Mathematica
    phi[z_] := Module[{f, k, prod}, If[Abs[z]==1, z, f=FactorInteger[z, GaussianIntegers->True]; If[Abs[f[[1, 1]]]==1, k=2; prod=f[[1, 1]], k=1; prod=1]; Do[prod=prod*(f[[i, 1]]-1)f[[i, 1]]^(f[[i, 2]]-1), {i, k, Length[f]}]; prod]]; Abs[Table[phi[n], {n, 100}]]^2
  • PARI
    \\ See A103222
    CEulerPhi(z)={my(f=factor(z,I)); prod(i=1, #f~, my([p,e]=f[i,]); if(norm(p)==1, p^e, (p-1)*p^(e-1)))}
    a(n)=norm(CEulerPhi(n)); \\ Andrew Howroyd, Aug 03 2018

Formula

a(n) = A103222(n)^2 + A103223(n)^2. - Andrew Howroyd, Aug 03 2018