cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103255 Integers x > 0 such that x^3 + y^3 = z^2 for some y > 0, z > 0, and gcd(x,y) = 1.

Original entry on oeis.org

1, 2, 11, 23, 37, 56, 57, 65, 112, 122, 193, 217, 242, 305, 312, 433, 592, 781, 851, 877, 889, 913, 1001, 1064, 1177, 1201, 1346, 1376, 1617, 1633, 1706, 1729, 1801, 1953, 1960, 1969, 2137, 2162, 2184, 2257, 2345, 2480, 2543, 2920, 3071, 3081, 3482, 3641, 3889, 4019
Offset: 1

Views

Author

Cino Hilliard, Mar 20 2005

Keywords

Examples

			x=11, y=37, 11^3 + 37^3 = 228^2. 11 is the third entry in the list.
The pairs [x,y] = [a(n),a(?)] for the first few terms are [1, 2], [2, 1], [11, 37], [23, 1177], [37, 11], [56, 65], [57, 112], [65, 56], [112, 57], [122, 1201], [193, 3482], [217, 312], [242, 433]. [_Joerg Arndt_, Sep 30 2012]
		

Crossrefs

Cf. A099426 (values of z).

Programs

  • Magma
    [ k : k in [1..100] | exists{P : P in IntegralPoints(EllipticCurve([0,k^3])) | P[1] gt 0 and P[2] ne 0 and GCD(Integers()!P[1],k) eq 1} ]; // Geoff Bailey
    
  • Mathematica
    (* This program uses z-values from A099426 b-file. To get 50 terms, the first 200 z-values suffice, the result being the same with the whole b-file of 300 z-values. *)
    terms = 50;
    zz = Import["https://oeis.org/A099426/b099426.txt", "Table"][[1 ;; 4 terms, 2]];
    r[z_] := {x, y, z} /. ToRules[Reduce[GCD[x, y] == 1 && 0Jean-François Alcover, Jun 13 2019 *)
  • PARI
    is_A103255(x, lim)=
    { /* Warning: just how big lim has to be is unclear */
        my(x3=x^3);
        for (y=1, lim,
            if ( gcd(x,y) != 1, next() );
            if ( issquare(x3+y^3), return(1) );
        );
        return(0);
    }
    /* Using lim=10^6 reproduces all terms <= 1000: */
    for (n=1,1000, if( is_A103255(n, 10^6), print1(n,", ")) );
    /* Joerg Arndt, Sep 30 2012 */
  • Sage
    # apparently inefficient as of version 5.2
    def is_A103255(n):
        E = EllipticCurve([0, n^3])
        E.gens(descent_second_limit=16);
        for p in E.integral_points():
            if p[0] > 0 and p[1] > 0 and gcd(p[1], n) == 1:
                return true
        return false
    [n for n in (1..60) if is_A103255(n)]
    # Peter Luschny, Sep 29 2012
    

Extensions

Recomputed and extended by Geoff Bailey (geoff(AT)maths.usyd.edu.au) using MAGMA, Jan 28 2007
a(9)-a(10) from Jonathan Vos Post, May 27 2007
a(11)-a(16) from Vincenzo Librandi, Dec 21 2010
a(17)-a(22) from Joerg Arndt, Sep 30 2012
a(23)-a(50) from Jean-François Alcover, Jun 12 2019