cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103262 McKay-Thompson series of class 36g for the Monster group.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 11, 16, 21, 26, 34, 44, 58, 74, 93, 116, 143, 178, 221, 272, 332, 402, 487, 588, 710, 854, 1021, 1216, 1444, 1714, 2031, 2400, 2826, 3318, 3888, 4552, 5322, 6208, 7224, 8388, 9726, 11264, 13028, 15044, 17339, 19952, 22930, 26324, 30186
Offset: 0

Views

Author

Noureddine Chair, Feb 21 2005

Keywords

Comments

Number of partitions of n into distinct parts prime to 3, with 2 types of each part.
This is also the number of partitions of n into parts with 2 types congruent to 1 or 5 mod(6).

Examples

			E.g., a(5)=8 because we have 5,5*,41,41*,4*1,4*1*,22*1,22*1* with all parts prime to 3. The parts congruent to 1,5 mod(6) are 5, 5*, 11111, 11111*, 1111*1*, 111*1*1*, 11*1*1*1*, 1*1*1*1*1*.
T36g = 1/q + 2*q^5 + 3*q^11 + 4*q^17 + 5*q^23 + 8*q^29 + 11*q^35 + ...
		

Crossrefs

Cf. A003105.

Programs

  • Maple
    series(product((1+x^k)^2/(1+x^(3*k))^2,k=1..100),x=0,100);
  • Mathematica
    CoefficientList[ Series[ Product[(1 + x^k)^2/(1 + x^(3k))^2, {k, 60}], {x, 0, 50}], x] (* Robert G. Wilson v, Feb 22 2005 *)
    eta[q_]:= q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q^(1/6)(eta[q^2]eta[q^3]/(eta[q]eta[q^6]))^2, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 06 2018 *)
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( (eta(x^2+A)*eta(x^3+A)/eta(x+A)/eta(x^6+A))^2, n))} /* Michael Somos, Sep 10 2005 */

Formula

G.f.: product_{k>0}((1+x^k)/(1+x^(3k)))^2= 1/product_{k>0}((1-x^(6k-1))*(1-x^(6k-5)))^2.
Expansion of q^(1/6)(eta(q^2)eta(q^3)/(eta(q)eta(q^6)))^2 in powers of q.
Euler transform of period 6 sequence [2, 0, 0, 0, 2, 0, ...]. - Michael Somos, Sep 10 2005
a(n) ~ exp(2*Pi*sqrt(n)/3) / (2*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Sep 01 2015

Extensions

More terms from Robert G. Wilson v, Feb 22 2005