cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103349 Numerators of sum_{k=1..n} 1/k^8 = Zeta(8,n).

Original entry on oeis.org

1, 257, 1686433, 431733409, 168646292872321, 168646392872321, 972213062238348973121, 248886558707571775009601, 1632944749460578249437992161, 1632944765723715465050248417
Offset: 1

Views

Author

Wolfdieter Lang, Feb 15 2005

Keywords

Comments

a(n) gives the partial sums, Zeta(8,n) of Euler's Zeta(8). Zeta(k,n) is also called H(k,n) because for k=1 these are the harmonic numbers H(n) A001008/A002805.
For the denominators see A103350 and for the rationals Zeta(8,n) see the W. Lang link under A103345.

Crossrefs

Programs

Formula

a(n)=numerator(sum_{k=1..n} 1/k^8).
G.f. for rationals Zeta(8, n): polylogarithm(8, x)/(1-x).