A103349 Numerators of sum_{k=1..n} 1/k^8 = Zeta(8,n).
1, 257, 1686433, 431733409, 168646292872321, 168646392872321, 972213062238348973121, 248886558707571775009601, 1632944749460578249437992161, 1632944765723715465050248417
Offset: 1
Crossrefs
Programs
-
Mathematica
s=0;lst={};Do[s+=n^1/n^9;AppendTo[lst,Numerator[s]],{n,3*4!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 24 2009 *) Table[ HarmonicNumber[n, 8] // Numerator, {n, 1, 10}] (* Jean-François Alcover, Dec 04 2013 *) Accumulate[1/Range[10]^8]//Numerator (* Harvey P. Dale, Aug 11 2024 *)
Formula
a(n)=numerator(sum_{k=1..n} 1/k^8).
G.f. for rationals Zeta(8, n): polylogarithm(8, x)/(1-x).
Comments