A103372 a(1) = a(2) = a(3) = a(4) = a(5) = 1 and for n>5: a(n) = a(n-4) + a(n-5).
1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 7, 8, 8, 9, 12, 15, 16, 17, 21, 27, 31, 33, 38, 48, 58, 64, 71, 86, 106, 122, 135, 157, 192, 228, 257, 292, 349, 420, 485, 549, 641, 769, 905, 1034, 1190, 1410, 1674, 1939, 2224, 2600, 3084, 3613, 4163, 4824, 5684, 6697, 7776
Offset: 1
Examples
a(14) = 5 because a(14) = a(14-4) + a(14-5) = a(10) + a(9) = 3 + 2 = 5.
References
- Zanten, A. J. van, The golden ratio in the arts of painting, building and mathematics, Nieuw Archief voor Wiskunde, 4 (17) (1999) 229-245.
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..14857
- J.-P. Allouche and T. Johnson, Narayana's cows and delayed morphisms, in G. Assayag, M. Chemillier, and C. Eloy, Troisièmes Journées d'Informatique Musicale, JIM '96, Île de Tatihou, France, 1996, pp. 2-7. [The hal link does not always work. - _N. J. A. Sloane_, Feb 19 2025]
- J.-P. Allouche and T. Johnson, Narayana's cows and delayed morphisms, in G. Assayag, M. Chemillier, and C. Eloy, Troisièmes Journées d'Informatique Musicale, JIM '96, Île de Tatihou, France, 1996, pp. 2-7. [Local copy with annotations and a correction from _N. J. A. Sloane_, Feb 19 2025]
- Richard Padovan, Dom Hans van der Laan and the Plastic Number.
- E. S. Selmer, On the irreducibility of certain trinomials, Math. Scand., 4 (1956) 287-302.
- J. Shallit, A generalization of automatic sequences, Theoretical Computer Science, 61 (1988), 1-16.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,1,1).
Programs
-
Mathematica
k = 4; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Array[a, 61] LinearRecurrence[{0,0,0,1,1},{1,1,1,1,1},70] (* Harvey P. Dale, Apr 22 2015 *)
-
PARI
a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; 1,1,0,0,0]^(n-1)*[1;1;1;1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
Formula
G.f. -x*(1+x)*(1+x^2) / ( -1+x^4+x^5 ). - R. J. Mathar, Aug 26 2011
Extensions
Edited by Ray Chandler and Robert G. Wilson v, Feb 06 2005
Comments