A103406 Triangle read by rows: n-th row = unsigned coefficients of the characteristic polynomials of an n X n matrix with 2's on the diagonal and 1's elsewhere.
1, 1, 2, 1, 4, 3, 1, 6, 9, 4, 1, 8, 18, 16, 5, 1, 10, 30, 40, 25, 6, 1, 12, 45, 80, 75, 36, 7, 1, 14, 63, 140, 175, 126, 49, 8, 1, 16, 84, 224, 350, 336, 196, 64, 9, 1, 18, 108, 336, 630, 756, 588, 288, 81, 10, 1, 20, 135, 480, 1050, 1512, 1470, 960, 405, 100, 11, 1, 22, 165
Offset: 0
Examples
Characteristic polynomial of 3 X 3 matrix [2 1 1 / 1 2 1 / 1 1 2] = x^3 - 6x^2 + 9x - 4. The first few characteristic polynomials are: 1 x - 2 x^2 - 4x + 3 x^3 - 6x^2 + 9x - 4 x^4 - 8x^3 + 18x^2 - 16x + 5
Links
- Vincenzo Librandi, Rows n = 0..100, flattened
Crossrefs
Programs
-
Maple
with(linalg): printf(`%d,`,1): for n from 1 to 15 do mymat:=array(1..n, 1..n): for i from 1 to n do for j from 1 to n do if i=j then mymat[i,j]:=2 else mymat[i,j]:=1 fi: od: od: temp:=charpoly(mymat,x): for j from n to 0 by -1 do printf(`%d,`,abs(coeff(temp, x, j))) od: od: # James Sellers, Apr 22 2005 p := (n,x) -> (x+1)^(n-1)+(x+1)^(n-2)*(n-1); seq(seq(coeff(p(n,x),x,n-j-1),j=0..n-1),n=1..11); # Peter Luschny, Feb 25 2014
-
Mathematica
t[n_, k_] := (k+1)*Binomial[n, k]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 09 2012, after Philippe Deléham *)
Formula
Binomial transform of A127648. - Gary W. Adamson, Nov 15 2007
T(n,k) = (k+1)*A007318(n,k). - Philippe Deléham, Apr 20 2009
T(n,k) = Sum_{i=1..k+1} i*binomial(k+1,i)*binomial(n-k,k+1-i). - Mircea Merca, Apr 11 2012
O.g.f.: (1 - y)/(1 - y - x*y)^2 = 1 + (1 + 2*x)*y + (1 + 4*x + 3*x*2)*y^2 + .... - Peter Bala, Oct 18 2023
Extensions
More terms from James Sellers, Apr 22 2005
Comments