A103434 a(n) = Sum_{i=1..n} Fibonacci(2i)^2.
0, 1, 10, 74, 515, 3540, 24276, 166405, 1140574, 7817630, 53582855, 367262376, 2517253800, 17253514249, 118257345970, 810547907570, 5555578007051, 38078498141820, 260993908985724, 1788878864758285, 12261158144322310
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (9, -16, 9, -1).
Programs
-
Magma
[(1/5)*(Fibonacci(4*n+2)-2*n-1): n in [0..50]]; // Vincenzo Librandi, Apr 20 2011
-
Mathematica
Accumulate[Fibonacci[Range[0,40,2]]^2] (* Harvey P. Dale, Nov 14 2013 *) LinearRecurrence[{9, -16, 9, -1},{0, 1, 10, 74},21] (* Ray Chandler, Sep 23 2015 *)
Formula
G.f.: x(1+x) / ((1-7x+x^2)(1-x)^2).
a(n) = (1/5)*(Fibonacci(4n+2) - 2n - 1).
a(n) = Sum_{i=0..2n} (-1)^i*Fibonacci(i)*Fibonacci(i+1). - Rigoberto Florez, May 04 2019