A103450 A figurate number triangle read by rows.
1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 12, 7, 1, 1, 9, 22, 22, 9, 1, 1, 11, 35, 50, 35, 11, 1, 1, 13, 51, 95, 95, 51, 13, 1, 1, 15, 70, 161, 210, 161, 70, 15, 1, 1, 17, 92, 252, 406, 406, 252, 92, 17, 1, 1, 19, 117, 372, 714, 882, 714, 372, 117, 19, 1, 1, 21, 145, 525, 1170, 1722, 1722, 1170, 525, 145, 21, 1
Offset: 0
Examples
From _Roger L. Bagula_, Oct 21 2008: (Start) The triangle begins: 1; 1, 1; 1, 3, 1; 1, 5, 5, 1; 1, 7, 12, 7, 1; 1, 9, 22, 22, 9, 1; 1, 11, 35, 50, 35, 11, 1; 1, 13, 51, 95, 95, 51, 13, 1; 1, 15, 70, 161, 210, 161, 70, 15, 1; 1, 17, 92, 252, 406, 406, 252, 92, 17, 1; 1, 19, 117, 372, 714, 882, 714, 372, 117, 19, 1; ... (End)
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
- F. S. Al-Kharousi, A. Umar, and M. M. Zubairu, On injective partial Catalan monoids, arXiv:2501.00285 [math.GR], 2024. See p. 9.
- G. Chiaselotti, W. Keith, and P. A. Oliverio, Two Self-Dual Lattices of Signed Integer Partitions, Appl. Math. Inf. Sci. 8, No. 6, 3191-3199 (2014), via ResearchGate.
Crossrefs
Programs
-
Magma
A103450:= func< n,k | k eq 0 select 1 else Binomial(n, k)*(k*(n-k) + n)/n >; [A103450(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 17 2021
-
Mathematica
(* First program *) p[x_, n_]:= p[x, n]= If[n==0, 1, (-1+x)^(n-2)*(1 -(n+1)*x +x^2)]; T[n_, k_]:= T[n,k]= (-1)^(n+k)*SeriesCoefficient[p[x, n], {x, 0, k}]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* Roger L. Bagula and Gary W. Adamson, Oct 21 2008 *)(* corrected by G. C. Greubel, Jun 17 2021 *) (* Second program *) T[n_, k_]:= If[k==0, 1, Binomial[n, k]*(n*(k+1) -k^2)/n]; Table[T[n, k], {n,0,16}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 17 2021 *)
-
Sage
def A103450(n, k): return 1 if (k==0) else binomial(n, k)*(k*(n-k) + n)/n flatten([[A103450(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 17 2021
Formula
T(n, k) = binomial(n-1, k-1)*(k*(n-k) + n)/k with T(n, 0) = 1.
T(n, k) = T(n-1, k-1) + T(n-1, k) + binomial(n-2, k-1) with T(n, 0) = 1.
Column k is generated by (1+k*x)*x^k/(1-x)^(k+1).
Rows are coefficients of the polynomials P(0, x) = 1, P(n, x) = (1+x)^(n-2)*(1 +(n+1)*x + x^2) for n>0.
T(n,k) = Sum_{j=0..n} binomial(k, k-j)*binomial(n-k, j)*(j+1). - Paul Barry, Oct 28 2006
A signed version arises from the coefficients of the polynomials defined by: p(x, 0) = 1, p(x, 1) = (-1 +x), p(x, 2) = (1 -3*x +x^2), p(x,n) = (-1 +x)^(n-2)*(1 - (n + 1)*x + x^2); T(n, k) = (-1)^(n+k)*coefficient of x^k of ( p(x,n) ). - Roger L. Bagula and Gary W. Adamson, Oct 21 2008
T(2*n+1, n) = A141222(n). - Emanuele Munarini, Jun 01 2012 [corrected by Werner Schulte, Nov 27 2021]
G.f.: is 1 / ( (1-q*x/(1-x)) * (1-x/(1-q*x)) ). - Joerg Arndt, Aug 27 2013
Sum_{k=0..floor(n/2)} T(n-k, k) = (1/5)*((-n+5)*Fibonacci(n+1) + (3*n- 2)*Fibonacci(n)) = A208354(n). - G. C. Greubel, Jun 17 2021
T(2*n, n) = A000984(n) * (n + 2) / 2 for n >= 0. - Werner Schulte, Nov 27 2021
Comments