A103454 a(n) = 0^n + 4^n - 1.
1, 3, 15, 63, 255, 1023, 4095, 16383, 65535, 262143, 1048575, 4194303, 16777215, 67108863, 268435455, 1073741823, 4294967295, 17179869183, 68719476735, 274877906943, 1099511627775, 4398046511103, 17592186044415, 70368744177663
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (5,-4).
Programs
-
Magma
[0^n+4^n-1: n in [0..30]]; // Vincenzo Librandi, Jul 02 2011
-
Mathematica
Table[Boole[n==0] +4^n -1, {n,0,40}] (* G. C. Greubel, Jun 21 2021 *)
-
Sage
[1]+[4^n -1 for n in [1..40]] # G. C. Greubel, Jun 21 2021
Formula
G.f.: (1 - 2*x + 4*x^2)/((1-x)*(1-4*x));
a(n) = Sum_{k=0..n} A103452(n, k)*4^k;
a(n) = Sum_{k=0..n} (2*0^(n-k) - 1)*0^(k*(n-k))4^k.
a(n) = A024036(n), n > 0. - R. J. Mathar, Aug 30 2008
E.g.f.: 1 - exp(x) + exp(4*x). - G. C. Greubel, Jun 21 2021
a(n) = 5*a(n-1) - 4*a(n-2). - Wesley Ivan Hurt, Mar 17 2023
Comments