A103517 Expansion of (1+2*x-x^2)/(1-x)^2.
1, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Maximal Clique
- Eric Weisstein's World of Mathematics, Maximum Clique
- Eric Weisstein's World of Mathematics, Maximal Independent Vertex Set
- Eric Weisstein's World of Mathematics, Maximum Independent Vertex Set
- Eric Weisstein's World of Mathematics, Rook Complement Graph
- Eric Weisstein's World of Mathematics, Rook Graph
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
Magma
[1] cat [2*n+2 : n in [1..60]]; // Wesley Ivan Hurt, Dec 07 2016
-
Maple
a := n -> 2*(n + 1) - 0^n: seq(a(n), n = 0..62); # Peter Luschny, May 12 2023
-
Mathematica
CoefficientList[Series[(-z^2 + 2*z + 1)/(z - 1)^2, {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 10 2011 *) CoefficientList[Series[2/(x - 1)^2 - 1, {x, 0, 62}], x] (* Robert G. Wilson v, Jan 29 2015 *) Join[{1}, 2 Range[2, 20]] (* Eric W. Weisstein, Sep 14 2017 *) Join[{1}, LinearRecurrence[{2, -1}, {4, 6}, 20]] (* Eric W. Weisstein, Sep 14 2017 *)
Formula
a(n) = 2*n + 2 - 0^n.
a(n) = Sum_{k=0..n} 0^(k(n-k))*(n+1).
Equals binomial transform of [1, 3, -1, 1, -1, 1, ...]. - Gary W. Adamson, Apr 23 2008
a(n) = 2*a(n-1) - a(n-2) for n > 2. - Eric W. Weisstein, Sep 14 2017
G.f.: (1 + 2*x - x^2)/(-1 + x)^2. - Eric W. Weisstein, Sep 14 2017
Comments