cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A103644 Expansion of g.f. (3x+1)/((1-3*x)*(1+5*x+9*x^2)).

Original entry on oeis.org

1, 1, 4, 25, 1, 256, 169, 1225, 5476, 961, 64009, 25600, 358801, 1164241, 515524, 15642025, 3243601, 101284096, 239228089, 216825625, 3736387876, 287336401, 27697946329, 47210598400
Offset: 0

Views

Author

Creighton Dement, Feb 11 2005

Keywords

Comments

A floretion-generated sequence of squares.
This sequence is also related to several other sequences of squares.

Crossrefs

Cf. A103645.

Programs

  • Maple
    A103644 := proc(n)
        6*3^n+5*(-1)^n*A190970(n+1)+18*(-1)^(n+1)*A190970(n) ;
        %/11 ;
    end proc:
    seq(A103644(n),n=0..20) ; # R. J. Mathar, Mar 23 2023
  • Mathematica
    CoefficientList[Series[(3x+1)/(1+2x-6x^2-27x^3),{x,0,30}],x] (* or *) LinearRecurrence[{-2,6,27},{1,1,4},30] (* Harvey P. Dale, Dec 13 2017 *)

Formula

a(n+3) = -2a(n+2) + 6a(n+1) + 27a(n), a(0) = 1, a(1) = 1, a(2) = 4.
a(n) = (1/11)*(2*3^n-(-5/2-(I*sqrt(11))/2)^n-(-5/2+(I*sqrt(11))/2)^n). [Creighton Dement, May 24 2009]
11*a(n) = 6*3^n + 5*b(n) + 18*b(n-1) where b(n) = (-1)^n*A190970(n+1). - R. J. Mathar, Mar 23 2023

Extensions

Corrected by T. D. Noe, Nov 07 2006

A103646 G.f.: 9*(3x+1)/(1+2x-6x^2-27x^3).

Original entry on oeis.org

9, 9, 36, 225, 9, 2304, 1521, 11025, 49284, 8649, 576081, 230400, 3229209, 10478169, 4639716, 140778225, 29192409, 911556864, 2153052801, 1951430625, 33627490884, 2586027609, 249281516961, 424895385600, 715721076009, 7848531119529
Offset: 0

Views

Author

Creighton Dement, Feb 12 2005

Keywords

Comments

A floretion-generated sequence of squares. This sequence is related to several other sequences of squares.
Floretion Algebra Multiplication Program, FAMP Code: 4ibaseiseq[ x*(+ 'i + 'j + i' + j' + 'ii' + 'jj' + 'ij' + 'ji' + e) ] where x is the sum of all (16) floretion basis vectors.

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[9(3x + 1)/(1 + 2x - 6x^2 - 27x^3), {x, 0, 25}], x] (* Robert G. Wilson v, Feb 12 2005 *)
    LinearRecurrence[{-2,6,27},{9,9,36},40] (* Harvey P. Dale, Mar 14 2016 *)

Formula

a(n+3) = -2a(n+2) + 6a(n+1) + 27a(n), a(0) = 9, a(1) = 9, a(2) = 36
a(n) = 9*A103644(n).
4*3^(n+1) = 2*A103644(n) + a(n) + A103645(n) = 11*A103644(n) + A103645(n).
a(n) = A110523(n+2)^2. - R. J. Mathar, Sep 11 2019

Extensions

Corrected and extended by Robert G. Wilson v, Feb 12 2005
Showing 1-2 of 2 results.