cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103685 Consider the morphism 1->{1,2}, 2->{1,3}, 3->{1}; a(n) is the total number of '3' after n substitutions.

Original entry on oeis.org

0, 0, 1, 5, 17, 51, 147, 419, 1191, 3383, 9607, 27279, 77455, 219919, 624415, 1772895, 5033759, 14292287, 40579903, 115217983, 327136895, 928835455, 2637230207, 7487852799, 21260161279, 60363694335, 171389837823, 486624896511, 1381667623423, 3922950583295
Offset: 0

Views

Author

Roger L. Bagula, Mar 26 2005

Keywords

Comments

Examples of the morphism starting with {1} are shown in A103684. Counting the total number of '1' in rows 1 to n of A103684 yields 1, 3, 8,... = A073357(n+1),
counting the total number of '2' in rows 1 to n yields 0, 1, 4,.. = A115390(n+1),
and counting the total number '3' in rows 1 to n yields a(n), the sequence here.
Inverse binomial transform yields 0, 0, 1, 2, 3, 6, 11, 20,..., a variant of A001590 [Nov 18 2010]

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5,-8,6,-2},{0,0,1,5},30] (* Harvey P. Dale, Nov 10 2011 *)

Formula

a(n)= +5*a(n-1) -8*a(n-2) +6*a(n-3) -2*a(n-4) = a(n-1)+A115390(n). [Nov 18 2010]
G.f.: x^2 / ( (x-1)*(2*x^3-4*x^2+4*x-1) ). [Nov 18 2010]

Extensions

Depleted by the information already in A073357 and A115390; corrected image of {2} in the defn. - The Assoc. Eds. of the OEIS, Nov 18 2010