cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A103684 Triangle read by rows, based on the morphism f: 1->{1,2}, 2->{1,3}, 3->{1}. First row is 1. If current row is a,b,c,..., then the next row is a,b,c,...,f(a),f(b),f(c),...

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1
Offset: 1

Views

Author

Roger L. Bagula, Mar 26 2005

Keywords

Examples

			[1], [1,1,2], [1,1,2,1,2,1,2,1,3], [1,1,2,1,2,1,2,1,3,1,2,1,2,1,3,1,2,1,3,1,2,1,3,1,2,1], ...
		

Crossrefs

Programs

  • Mathematica
    NestList[ Flatten[ Join[ #, # /. {1 -> {1, 2}, 2 -> {1, 3}, 3->{1}}]] &, {1}, 4] // Flatten (* Robert G. Wilson v, Jul 09 2006 - corrected by G. C. Greubel, Oct 26 2017 *)
  • PARI
    {a(n)=local(m,v,w); v=w=[1]; while(length(w)Michael Somos, Apr 16 2005 */

Extensions

Image of {3} in the definition corrected by R. J. Mathar, Nov 18 2010

A115390 Binomial transform of tribonacci sequence A000073.

Original entry on oeis.org

0, 0, 1, 4, 12, 34, 96, 272, 772, 2192, 6224, 17672, 50176, 142464, 404496, 1148480, 3260864, 9258528, 26287616, 74638080, 211918912, 601698560, 1708394752, 4850622592, 13772308480, 39103533056, 111026143488, 315235058688, 895042726912, 2541282959872
Offset: 0

Views

Author

Jonathan Vos Post, Mar 08 2006

Keywords

Comments

See also A117189 Binomial transform of the tribonacci sequence A000073.

Examples

			1*0 = 0.
1*0 + 1*0 = 0.
1*0 + 2*0 + 1*1 = 1.
1*0 + 3*0 + 3*1 + 1* 1 = 4.
1*0 + 4*0 + 6*1 + 4*1 + 1*2 = 12.
		

Crossrefs

Cf. A000073, A117189. Trisection of A103685.

Programs

  • Haskell
    a115390 n = a115390_list !! n
    a115390_list = 0 : 0 : 1 : map (* 2) (zipWith (-) a115390_list
       (tail $ map (* 2) $ zipWith (-) a115390_list (tail a115390_list)))
    -- Reinhard Zumkeller, Oct 21 2011
  • Mathematica
    b[0]=b[1]=0;b[2]=1;b[n_]:=b[n]=b[n-1]+b[n-2]+b[n-3]; a[n_]:=Sum[n!/(k!*(n-k)!)*b[k],{k,0,n}];Table[a[n],{n,0,27}] (* Farideh Firoozbakht, Mar 11 2006 *)
  • Maxima
    sum(sum(binomial(j-1,k-1)*2^(j-k)*binomial(n-j+k-1,2*k-1),j,k,n-k),k,1,n); /* Vladimir Kruchinin, Aug 18 2010 */
    

Formula

a(n) = Sum_{k=0..n} C(n,k)*A000073(k).
O.g.f.: -x^2/(-1+4*x-4*x^2+2*x^3). - R. J. Mathar, Apr 02 2008
a(n) = sum(sum(binomial(j-1,k-1)*2^(j-k)*binomial(n-j+k-1,2*k-1),j,k,n-k),k,1,n). - Vladimir Kruchinin, Aug 18 2010

A073357 Binomial transform of tribonacci numbers.

Original entry on oeis.org

0, 1, 3, 8, 22, 62, 176, 500, 1420, 4032, 11448, 32504, 92288, 262032, 743984, 2112384, 5997664, 17029088, 48350464, 137280832, 389779648, 1106696192, 3142227840, 8921685888
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Jul 29 2002

Keywords

Comments

For n-> infinity the ratio a(n)/a(n-1) approaches 1+c, where c is the real root of the cubic x^3-x^2-x-1=0; c=1.8392867...
a(n) = rightmost term of M^n *[100] where M = the 3X3 matrix [1 1 0 / 0 1 1 / 1 1 2]. Middle term of the vector = partial sums of A073357 through a(n-1). E.g., M^5*[1 0 0] = [18 34 62] where 62 = a(5) and 34 = partial sums of A073357 through a(4): 34 = 0+1+3+8+22. - Gary W. Adamson, Jul 24 2005

References

  • Sloane, N. J. A. and Plouffe, S. The Encyclopedia of Integer Sequences. San Diego, CA: Academic Press, 1995.

Crossrefs

Cf. A000073, A073313. Trisection of A103685.

Programs

  • Mathematica
    h[n_] := h[n]=4*h[n-1]-4*h[n-2]+2*h[n-3]; h[0]=0; h[1]=1; h[2]=3
    LinearRecurrence[{4,-4,2},{0,1,3},30] (* Harvey P. Dale, Nov 13 2011 *)

Formula

a(n) = 4*a(n-1) - 4*a(n-2) + 2*a(n-3), a(0)=0, a(1)=1, a(2)=3.
Generating function A(x)=(x-x^2)/(1-4x+4x^2-2x^3).
a(n) = A115390(n+1) - A115390(n). - R. J. Mathar, Apr 16 2009
Showing 1-3 of 3 results.