A117189
Binomial transform of the tribonacci sequence A000073 (shifted left twice).
Original entry on oeis.org
1, 2, 5, 14, 40, 114, 324, 920, 2612, 7416, 21056, 59784, 169744, 481952, 1368400, 3885280, 11031424, 31321376, 88930368, 252498816, 716916544, 2035531648, 5779458048, 16409538688, 46591385856, 132286304768, 375598753024, 1066432564736, 3027907856384
Offset: 0
a(4) = 14 = 1*1 + 3*1 + 3*2 + 1*4;
a(6) = 324 = 2*114 + 1*40 + 2*14 + 3*5 + 4*2 + 5*1. - _Bob Selcoe_, Jun 28 2014
-
CoefficientList[Series[-(x - 1)^2/(-1 + 4*x - 4*x^2 + 2*x^3), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jul 05 2014 *)
LinearRecurrence[{4,-4,2},{1,2,5},40] (* Harvey P. Dale, Oct 10 2016 *)
Corrected and extended by
T. D. Noe, Nov 07 2006
A073357
Binomial transform of tribonacci numbers.
Original entry on oeis.org
0, 1, 3, 8, 22, 62, 176, 500, 1420, 4032, 11448, 32504, 92288, 262032, 743984, 2112384, 5997664, 17029088, 48350464, 137280832, 389779648, 1106696192, 3142227840, 8921685888
Offset: 0
Mario Catalani (mario.catalani(AT)unito.it), Jul 29 2002
- Sloane, N. J. A. and Plouffe, S. The Encyclopedia of Integer Sequences. San Diego, CA: Academic Press, 1995.
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- Index entries for linear recurrences with constant coefficients, signature (4, -4, 2).
-
h[n_] := h[n]=4*h[n-1]-4*h[n-2]+2*h[n-3]; h[0]=0; h[1]=1; h[2]=3
LinearRecurrence[{4,-4,2},{0,1,3},30] (* Harvey P. Dale, Nov 13 2011 *)
A103685
Consider the morphism 1->{1,2}, 2->{1,3}, 3->{1}; a(n) is the total number of '3' after n substitutions.
Original entry on oeis.org
0, 0, 1, 5, 17, 51, 147, 419, 1191, 3383, 9607, 27279, 77455, 219919, 624415, 1772895, 5033759, 14292287, 40579903, 115217983, 327136895, 928835455, 2637230207, 7487852799, 21260161279, 60363694335, 171389837823, 486624896511, 1381667623423, 3922950583295
Offset: 0
-
LinearRecurrence[{5,-8,6,-2},{0,0,1,5},30] (* Harvey P. Dale, Nov 10 2011 *)
Depleted by the information already in
A073357 and
A115390; corrected image of {2} in the defn. - The Assoc. Eds. of the OEIS, Nov 18 2010
A192801
Constant term in the reduction of the polynomial (x+2)^n by x^3->x^2+x+1. See Comments.
Original entry on oeis.org
1, 2, 4, 9, 25, 84, 312, 1199, 4637, 17906, 68976, 265249, 1019069, 3913484, 15026092, 57690143, 221487945, 850350482, 3264725772, 12534190569, 48122302705, 184755243892, 709328262928, 2723314511871, 10455585321989, 40141990468066
Offset: 0
The first five polynomials p(n,x) and their reductions:
p(1,x)=1 -> 1
p(2,x)=x+2 -> x+2
p(3,x)=x^2+4x+4 -> x^2+1
p(4,x)=x^3+6x^2+12x+8 -> x^2+4x+4
p(5,x)=x^4+8x^3+24x^2+32x+16 -> 7x^2+13*x+9, so that
A192798=(1,2,4,9,25,...), A192799=(0,1,4,13,42,...), A192800=(0,0,1,7,34,...).
-
q = x^3; s = x^2 + x + 1; z = 40;
p[n_, x_] := (x + 2)^n;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192801 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
(* A192802 *)
u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}]
(* A192803 *)
A116521
Binomial transform of tetranacci sequence A000078.
Original entry on oeis.org
0, 0, 0, 1, 5, 17, 51, 148, 429, 1250, 3655, 10701, 31336, 91752, 268623, 786414, 2302262, 6739984, 19731685, 57765711, 169112717, 495088023, 1449400960, 4243211207, 12422263776, 36366946961, 106466490879, 311687250156
Offset: 0
Table shows the tetranacci numbers multiplied into rows of Pascal's triangle.
1*0 = 0.
1*0 + 1*0 = 0.
1*0 + 2*0 + 1*0 = 0.
1*0 + 3*0 + 3*0 + 1* 1 = 1.
1*0 + 4*0 + 6*0 + 4*1 + 1*1 = 5.
1*0 + 5*0 + 10*0 + 10*1 + 5*1 + 1*2 = 17.
-
t[0]:=0: t[1]:=0: t[2]:=0: t[3]:=1: for n from 4 to 35 do t[n]:=t[n-1]+t[n-2]+t[n-3]+t[n-4] od: seq(add(binomial(n,k)*t[k],k=0..n),n=0..30); # end of first Maple program
G:=x^3/(1-5*x+8*x^2-6*x^3+x^4): Gser:=series(G,x=0,33): seq(coeff(Gser,x,n),n=0..30); # Emeric Deutsch, Apr 09 2006
-
LinearRecurrence[{5,-8,6,-1}, {0,0,0,1}, 25] (* G. C. Greubel, Nov 03 2016 *)
-
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,6,-8,5]^n*[0;0;0;1])[1,1] \\ Charles R Greathouse IV, Jun 28 2017
Showing 1-5 of 5 results.
Comments