cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103751 Squares whose digits are all positive and even.

Original entry on oeis.org

4, 64, 484, 4624, 8464, 26244, 28224, 68644, 228484, 446224, 824464, 868624, 2862864, 8282884, 8868484, 22448644, 26646244, 44462224, 82228624, 82664464, 222248464, 284866884, 662444644, 866242624, 4246868224, 4444622224, 6266622244, 6282464644, 6668682244, 8264264464, 8268628624
Offset: 1

Views

Author

Emeric Deutsch, Mar 28 2005

Keywords

Comments

Subset of A030098.
All terms end with 4, because when k^2 ends with 6, the tens digit of k^2 is always odd. - Bernard Schott, May 02 2022
The sequence is infinite because squares of the form 4 = 2^2, 64 = 8^2, 4624 = 68^2, 446224 = 668^2, 44462224 = 6668^2, ... (2*(10^k + 2) / 3 )^2 , k >= 0, are terms. - Marius A. Burtea, May 02 2022

Crossrefs

Cf. A030098.

Programs

  • Magma
    [n:n in [s*s:s in [1..100000]]| Set(Intseq(n)) subset {2,4,6,8}]; // Marius A. Burtea, May 02 2022
  • Maple
    a:=proc(n) if convert(convert((n^2),base,10),set) subset {2,4,6,8} then n^2 else fi end:seq(a(n),n=1..100000);
  • Mathematica
    pevQ[n_]:=Module[{idn=IntegerDigits[n]},FreeQ[idn,0]&&And@@EvenQ[idn]]; Select[Range[70000]^2,pevQ] (* Harvey P. Dale, Jul 19 2013 *)
  • PARI
    isok(n) = my(d=digits(n)); vecmin(d) && (#select(x->(x%2), d) == 0);
    lista(nn) = {my(list = List()); for (n=1, nn, if (isok(n^2), listput(list, n^2););); Vec(list);} \\ Michel Marcus, May 02 2022
    

Extensions

More terms from Bernard Schott, May 02 2022