cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103787 a(n) = number of k's that make primorial P(n)/A019565(k)+A019565(k) prime, A019565(k)^2<=P(n).

Original entry on oeis.org

1, 2, 4, 8, 12, 21, 40, 70, 117, 263, 450, 703, 1385, 2423, 5501, 8617, 18249, 29352, 61970, 103568, 209309, 404977, 853279, 1609502, 3008915, 5342983, 10287184, 19087437, 38498011, 78520137, 145642314
Offset: 1

Views

Author

Lei Zhou, Feb 15 2005

Keywords

Comments

If we remove the restriction A019565(k)^2<=P(n), every term gets doubled.
Number of distinct primes of the form d + P(n)/d, where P(n) is the n-th primorial A002110(n) and d is a divisor of P(n).

Examples

			P(1)=2, A019565(0)=1, 2/1+1=3 is prime, a(1)=1;
P(2)=6, A019565(0)=1, 6/1+1=7; A019565(1)=2, 6/2+2=5; so a(2)=2.
		

Crossrefs

Programs

  • Mathematica
    npd = 1; Do[npd = npd*Prime[n]; tn = 0; tt = 1; cp = npd/tt + tt; ct = 0; While[IntegerQ[cp], If[(cp >= (tt*2)) && PrimeQ[cp], ct = ct + 1]; tn = tn + 1; tt = 1; k1 = tn; o = 1; While[k1 > 0, k2 = Mod[k1, 2]; If[k2 == 1, tt = tt*Prime[o]]; k1 = (k1 - k2)/2; o = o + 1]; cp = npd/tt + tt]; Print[ct], {n, 1, 22}]
    Table[ps=Prime[Range[n]]; cnt=0; Do[b=IntegerDigits[i,2,n]; p=Times@@(ps^b) + Times@@(ps^(1-b)); If[PrimeQ[p], cnt++], {i,0,2^(n-1)-1}]; cnt, {n,22}]

Formula

a(n) = A088627(A002110(n)/2).

Extensions

a(28)-a(31) from James G. Merickel, Aug 07 2015