cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A187749 Maximum k for which a partition of the product of the first k primes (the k-th primorial) into the sum of two products gives a sum that yields only n composites from that sum down to 1+1=2 by sequential deletion of the largest prime.

Original entry on oeis.org

17, 20, 24, 27, 31, 33, 35, 40, 41, 42, 44, 49, 50, 54
Offset: 0

Views

Author

James G. Merickel, Jan 03 2013

Keywords

Comments

This is an extension of the solution of the maximum problem given at the beginning of the EXAMPLE section.
Number of ways the n-th primorial can be partitioned into two parts and summed to achieve a maximum number of primes (minimum number of composites), by a variant of the (main) linked program: 2, 5, 1, 3, 3, 2, 4, 1, 2, 7, 7, 1, 2 and 1. This program -- the longer of the ones actually linked to -- produces terms starting at a(1). a(0) is handled fully in the example. An auxiliary program also at the link gives the unique a(13) case in a decompression. - James G. Merickel, Aug 01 2015

Examples

			a(0): Both 2*5*11*23*37*41*43*59 + 3*7*13*17*19*29*31*47*53 and 2*3*5*11*13*19*29*41*43*47*53 + 7*17*23*31*37*59 are primes such that repeatedly removing the largest prime down to the sum 1 + 1 yields a prime, and these are the only examples for the primes through prime(17)=59. That is, for either of the above cases, neither portion may be multiplied by 61 to give a prime sum. Therefore, a(0) = 17, and this means -- identically -- that none of the primes counted in A103787(18) naturally link by deletion to primes counted in A103787(k) in a chain from k equals 17 down to 1, but that at least one of the primes counted in A103787(17) -- both of the above -- do link in such a way to primes counted in A103787(k) for k equals 16 down to 1.
a(2): 2*3*5*11*13*19*29*41*43*47*53*59*71*79*89 + 7*17*23*31*37*61*67*73*83 is prime and removing the primes sequentially yields a composite only after removal of 79 and then of 61. This twosome of composites is uniquely fewest for partitions of this many of the first primes (24), and no such sum that includes the next prime (97) yields fewer than 3 composites by deletion. So, a(2) = 24.
		

Crossrefs

Extensions

Program expanded and moved to link by James G. Merickel, Aug 01 2015

A293756 a(n) = smallest number k with n prime factors such that d + k/d is prime for every d | k.

Original entry on oeis.org

1, 2, 6, 30, 210, 186162
Offset: 0

Views

Author

Thomas Ordowski, Nov 11 2017

Keywords

Comments

For n > 0, a(n) is even and squarefree.
For n > 0, a(n) gives 2^(n-1) distinct primes.
If the k-tuple conjecture is true, then this sequence is infinite. - Carl Pomerance, Nov 12 2017
a(n) is the least integer k with n prime divisors such that A282849(k) = A000005(k). - Michel Marcus, Nov 13 2017
a(n) is the smallest k with n prime factors such that A282849(k) = 2^n. - Thomas Ordowski, Nov 13 2017
a(6), if it exists, has a prime divisor greater than 10^3. - Arkadiusz Wesolowski, Nov 14 2017

Examples

			a(2) = 2*3 = 6 because k = 6 is the smallest number with 2 prime factors such that for d = {1, 2, 3, 6} we have 1 + 6/1 = 6 + 6/6 = 7 is prime and 2 + 6/2 = 3 + 6/3 = 5 is prime.
From _Michael De Vlieger_, Nov 14 2017: (Start)
First differences of prime indices of a(n):
n       a(n)   A287352(a(n))
-----------------------------
1         2    1
2         6    1, 1
3        30    1, 1, 1
4       210    1, 1, 1, 1
5    186162    1, 1, 6, 1, 11
(End)
		

Crossrefs

Subsequence of A080715 (d + k/d is prime for every d|k).

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,j,k,n,ok; print(1);for n from 1 to q do for k from 2 to q do a:=ifactors(k)[2]; a:=add(a[j][2],j=1..nops(a)); if a=n then b:=divisors(k); ok:=1;
    for j from 1 to nops(b) do if not isprime(b[j]+k/b[j]) then ok:=0; break; fi; od; if ok=1 then print(k); break; fi; fi; od; od; end: P(10^8); # Paolo P. Lava, Nov 16 2017
  • PARI
    isok(k, n)=if (!issquarefree(k), return (0)); if (omega(k) != n, return (0)); fordiv(k, d, if (!isprime(d+k/d), return(0))); 1;
    a(n) = {my(k=1); while( !isok(k, n), k++); k;} \\ Michel Marcus, Nov 11 2017

Formula

a(n) = 2*A295124(n-1) for n > 0. - Thomas Ordowski, Nov 15 2017

Extensions

a(5) from Michel Marcus, Nov 11 2017

A103788 a(n) = number of ks that make primorial P(n)/A019565(k)-A019565(k) prime.

Original entry on oeis.org

0, 1, 3, 6, 13, 28, 39, 78, 138, 207, 437, 865, 1423, 2750, 4904, 8861, 16201, 33346, 58534, 111878, 208914, 397522
Offset: 1

Views

Author

Lei Zhou, Feb 16 2005

Keywords

Examples

			P(2)/A(0)-A(0)=6-1=5 is prime, so a(2)=1;
P(4)/A(k)-A(k): 210/2-2=103; 210/3-3=67; 210/6-6=29; 210/5-5=37; 210/10-10=11; 210/7-7=23; so a(4)=6;
		

Crossrefs

Programs

  • Mathematica
    npd = 1; Do[npd = npd*Prime[n]; tn = 0; tt = 1; cp = npd/tt - tt; ct = 0; While[IntegerQ[cp], If[(cp > 0) && PrimeQ[cp], ct = ct + 1]; tn = tn + 1; tt = 1; k1 = tn; o = 1; While[k1 > 0, k2 = Mod[k1, 2]; If[k2 == 1, tt = tt*Prime[o]]; k1 = ( k1 - k2)/2; o = o + 1]; cp = npd/tt - tt]; Print[ct], {n, 1, 22}]

A331665 Numbers k with a record number of divisors d < sqrt(k) such that d + k/d is prime.

Original entry on oeis.org

1, 2, 6, 30, 210, 2310, 3570, 4830, 11550, 30030, 43890, 111930, 131670, 510510, 690690, 870870, 1021020, 2459730, 9699690, 13123110, 17160990, 40750710, 146006070, 223092870, 340510170, 358888530, 688677990, 1462190730, 2445553110, 2911018110, 6469693230
Offset: 1

Views

Author

Amiram Eldar, Jan 23 2020

Keywords

Comments

The corresponding record values are 0, 1, 2, 4, 8, 12, 13, 14, 15, 21, 24, 25, 29, 40, 41, 46, 49, 51, 70, 77, 88, 89, 90, 117, 120, 147, 153, 154, 155, 161, 263, ...
Apparently all the primorial numbers (A002110) are terms. The record values of terms that are primorial numbers are terms of A103787.

Examples

			2 has one divisor below sqrt(2), 1, such that 1 + 2/1 = 3 is prime.
6 has 2 divisors below sqrt(6), 1 and 2, such that 1 + 6/1 = 7 and 2 + 6/2 = 5 are primes.
30 has 4 divisors below sqrt(30), 1, 2, 3, and 5 such that 1 + 30/1 = 31, 2 + 30/2 = 17, 3 + 30/3 = 13 and 5 + 30/5 = 11 are primes.
		

Crossrefs

Programs

  • Mathematica
    divCount[n_] := DivisorSum[n, Boole @ PrimeQ[# + n/#] &, #^2 < n &]; seq = {}; dm = -1; Do[d1 = divCount[n]; If[d1 > dm, dm = d1; AppendTo[seq, n]], {n, 1,10^6}]; seq
Showing 1-4 of 4 results.