A103803 Primes p such that both 2p - 15 and 2p + 15 are primes.
11, 13, 19, 23, 29, 37, 41, 43, 47, 61, 71, 83, 89, 107, 113, 127, 139, 149, 191, 197, 223, 281, 293, 331, 379, 419, 421, 461, 463, 491, 499, 503, 523, 569, 593, 601, 653, 719, 733, 769, 797, 811, 821, 839, 881, 887, 1049, 1063, 1129, 1163, 1181, 1213, 1231
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A103802.
Programs
-
Magma
[p: p in PrimesUpTo(3200)| IsPrime(2*p+15) and IsPrime(2*p-15) ]; // Vincenzo Librandi, Jan 28 2011
-
Mathematica
Select[Range[11,2000], PrimeQ[ # ] && PrimeQ[2# + 15] && PrimeQ[2# - 15] &] Select[Prime[Range[2,250]],And@@PrimeQ[2#+{15,-15}]&] (* Harvey P. Dale, May 21 2013 *)
Formula
p, 2p-15 and 2p+15 all are positive and are primes (hence we omit p=2).