A103815 a(n) = -1 + Product_{k=1..n} Fibonacci(k).
0, 0, 1, 5, 29, 239, 3119, 65519, 2227679, 122522399, 10904493599, 1570247078399, 365867569267199, 137932073613734399, 84138564904377983999, 83044763560621070207999, 132622487406311849122175999, 342696507457909818131702783999, 1432814097681520949608649339903999
Offset: 1
Examples
a(15) = 1 * 1 * 2 * 3 * 5 * 8 * 13 * 21 * 34 * 55 * 89 * 144 * 233 * 377 * 610 - 1 = 84138564904377983999 is prime.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..99
Programs
-
Maple
F:= n-> (<<0|1>, <1|1>>^n)[1, 2]: a:= n-> -1 + mul(F(i), i=1..n): seq(a(n), n=1..20); # Alois P. Heinz, Aug 09 2018
-
Mathematica
FoldList[Times,Fibonacci[Range[20]]]-1 (* Harvey P. Dale, Aug 29 2021 *)
Formula
a(n) = Product[Fibonacci[k], {k, 1, n}]-1 = Product[A000045[k], {k, 1, n}]-1.
a(n) = A003266(n) - 1. - Alois P. Heinz, Aug 09 2018
Comments