cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103941 Number of unrooted loopless n-edge maps in the plane (planar with a distinguished outside face).

Original entry on oeis.org

1, 1, 2, 6, 22, 103, 614, 3872, 26414, 186988, 1367976, 10254326, 78461338, 610598818, 4821248244, 38546510368, 311560875422, 2542507084588, 20925300483992, 173530381632724, 1448900079476152, 12172334379246523, 102833593763830038, 873187910184763024, 7449120536014301138
Offset: 0

Views

Author

Valery A. Liskovets, Mar 17 2005

Keywords

References

  • V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.

Crossrefs

Programs

  • Mathematica
    a[n_] := (1/(2n)) (Binomial[4n, n]/(3n+1) + Sum[Boole[0 < k < n] EulerPhi[ n/k] Binomial[4k, k], {k, Divisors[n]}] + q[n]);
    q[n_] := If[EvenQ[n], 0, Binomial[2n, (n-1)/2]];
    Array[a, 20] (* Jean-François Alcover, Sep 01 2019 *)
  • PARI
    a(n) = {if(n==0, 1, (sumdiv(n, d, if(dAndrew Howroyd, Mar 28 2021

Formula

For n > 0, a(n) = (1/(2n))*[binomial(4n, n)/(3n+1) + Sum_{0A000010, q(n)=0 if n is even and q(n)=binomial(2n, (n-1)/2) if n is odd.

Extensions

a(0)=1 prepended and terms a(21) and beyond from Andrew Howroyd, Mar 28 2021