cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A006390 Number of sensed loopless planar maps with n edges.

Original entry on oeis.org

1, 1, 2, 5, 14, 49, 240, 1259, 7570, 47996, 319518, 2199295, 15571610, 112773478, 832809504, 6253673323, 47650870538, 367784975116, 2871331929096, 22647192990256, 180277915464664, 1447060793168493, 11703567787559680, 95312765368320637, 781151020141584190
Offset: 0

Views

Author

Keywords

Comments

By duality, also the number of sensed isthmusless planar maps with n edges. An isthmus may also be called a bridge. - Andrew Howroyd, Mar 28 2021

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000010, A006384, A000260 (rooted), A006391 (unsensed case), A103941 (with distinguished face), A103942 (with distinguished vertex).

Programs

  • Mathematica
    a[n_] := If[n==0, 1, (1/(2n))(Sum[Binomial[4k, k] EulerPhi[n/k] Boole[ 0Jean-François Alcover, Aug 29 2019 *)
  • PARI
    a(n) = {if(n==0, 1, (sumdiv(n, d, if(dAndrew Howroyd, Mar 28 2021

Formula

a(n) = (1/(2n))*[2(4n+1)*binomial(4n, n)/((n+1)*(3n+1)*(3n+2)) + Sum_{0A000010), q(n)=binomial(2n, (n-2)/2) if n is even and q(n)=2n*binomial(2n, (n-1)/2)/(n+1) if n is odd.

Extensions

More terms from Valery A. Liskovets, Dec 01 2003
a(17) and a(19) corrected by Sean A. Irvine, Mar 26 2017

A103942 Number of unrooted n-edge isthmusless maps in the plane (planar with a distinguished outside face).

Original entry on oeis.org

1, 1, 3, 9, 38, 187, 1120, 7083, 47990, 337676, 2455517, 18310155, 139447034, 1080773098, 8502896424, 67763884363, 546147639926, 4445389286380, 36501274080076, 302060508150976, 2517213486505592, 21110062391001119, 178052027949519768, 1509631210682469661, 12860805940582898474
Offset: 0

Views

Author

Valery A. Liskovets, Mar 17 2005

Keywords

References

  • V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.

Crossrefs

Programs

  • Mathematica
    a[n_] := (1/(2n)) ((5n^2 + 13n + 2) Binomial[4n, n]/((n+1)(3n+1)(3n+2)) + Sum[Boole[0 < k < n] EulerPhi[n/k] Binomial[4k, k], {k, Divisors[n]}] + q[n]);
    q[n_] := If[EvenQ[n], 0, (n-1) Binomial[2n, (n-1)/2]]/(n+1);
    Array[a, 20] (* Jean-François Alcover, Sep 01 2019 *)
  • PARI
    a(n) = {if(n==0, 1, (sumdiv(n, d, if(dAndrew Howroyd, Mar 28 2021

Formula

For n > 0, a(n) = (1/(2n))*[(5n^2+13n+2)*binomial(4n, n)/((n+1)(3n+1)(3n+2)) + Sum_{0A000010), q(n)=0 if n is even and q(n)=(n-1)*binomial(2n, (n-1)/2)/(n+1) if n is odd.

Extensions

a(0)=1 prepended and terms a(21) and beyond from Andrew Howroyd, Mar 28 2021
Showing 1-2 of 2 results.