A103982 Indices of octahedral numbers (A005900) which are semiprimes.
2, 5, 6, 9, 13, 17, 19, 21, 23, 31, 33, 53, 71, 87, 89, 93, 113, 123, 127, 157, 163, 167, 177, 181, 197, 201, 219, 229, 237, 321, 327, 347, 373, 393, 401, 409, 417, 419, 449, 487, 489, 503, 509, 519, 523, 537, 541, 563, 571, 577, 597, 599, 633, 647, 699, 751
Offset: 1
Examples
93 is in this sequence because A005900(93) = (2*93^3 + 93)/3 = 536269 = 31 * 17299, which is semiprime.
References
- J. H. Conway and R. K. Guy, The Book of Numbers, New York, Springer-Verlag, p. 50, 1996.
- L. E. Dickson, History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Chelsea, 1952.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
- Jonathan Vos Post, Table of Polytope Numbers, Sorted, Through 1,000,000. [dead link]
- Eric Weisstein's World of Mathematics, Octahedral Number.
- Eric Weisstein's World of Mathematics, Semiprime.
Programs
-
Mathematica
Flatten[Position[Table[(2n^3+n)/3,{n,1000}],?(PrimeOmega[#]==2&)]] (* _Harvey P. Dale, Jun 17 2013 *)
-
PARI
isok(n) = bigomega((2*n^3+n)/3) == 2; \\ Michel Marcus, Dec 14 2015
Formula
Extensions
More terms from Harvey P. Dale, Jun 17 2013
Comments