A104072 Primes of the form 2^n + 5^2.
29, 41, 89, 281, 1049, 1048601, 4194329, 17179869209, 1180591620717411303449, 4951760157141521099596496921, 5192296858534827628530496329220121, 332306998946228968225951765070086169
Offset: 1
Keywords
Examples
From _Timothy L. Tiffin_, Aug 07 2016: (Start) a(1) = 2^2 + 5^2 = 4 + 25 = 29. a(2) = 2^4 + 5^2 = 16 + 25 = 41. a(3) = 2^6 + 5^2 = 64 + 25 = 89. a(4) = 2^8 + 5^2 = 256 + 25 = 281. a(5) = 2^10 + 5^2 = 1024 + 25 = 1049. a(6) = 2^20 + 5^2 = 1048576 + 25 = 1048601. (End)
Programs
-
Mathematica
a = Delete[Union[Flatten[Table[If [PrimeQ[2^n + 25] == True, 2^n + 25, 0], {n, 1, 400}]]], 1] Select[2^Range[0,120]+25,PrimeQ] (* Harvey P. Dale, Jun 20 2017 *)
Formula
If n == 0 mod 4, then a(m) == 1 mod 10. If n == 2 mod 4, then a(m) == 9 mod 10. - Timothy L. Tiffin, Aug 09 2016
Comments