cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A125137 a(n) = p^p + 1, where p = prime(n).

Original entry on oeis.org

5, 28, 3126, 823544, 285311670612, 302875106592254, 827240261886336764178, 1978419655660313589123980, 20880467999847912034355032910568, 2567686153161211134561828214731016126483470, 17069174130723235958610643029059314756044734432, 10555134955777783414078330085995832946127396083370199442518
Offset: 1

Views

Author

N. J. A. Sloane, Jan 21 2007

Keywords

Crossrefs

See A125136 for factorizations. Cf. A088730, A125135.

Programs

Formula

a(n) = A051674(n)+1. - R. J. Mathar, Apr 23 2007

A104132 Largest prime factor of pip(n)^pip(n)-1 where pip(n) is the n-th prime-indexed prime.

Original entry on oeis.org

13, 71, 1806113, 2699538733, 568972471024107865287021434301977158534824481, 5926187589691497537793497756719
Offset: 1

Views

Author

Cino Hilliard, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    lpf[n_]:=Module[{p=Prime[Prime[n]]},FactorInteger[p^p-1][[-1,1]]]; Array[lpf,6] (* Harvey P. Dale, Nov 09 2017 *)
  • PARI
    piptopipm1(n) = { local(x, y); for(x=1, n, y=pip(x)^pip(x)-1; print1(bdiv(y)", "); ) }
    pip(n) = { return(prime(prime(n))) }
    bdiv(n) = { local(x); x=ifactor(n); return(x[length(x)]) }
    ifactor(n, m=0) = { local(f, j, k, flist); flist=[]; f=Vec(factor(n, m)); for(j=1, length(f[1]), for(k = 1, f[2][j], flist = concat(flist, f[1][j]) ); ); return(flist) }

Formula

a(n) = A006530(A048861(A006450(n))). - Amiram Eldar, May 23 2020

Extensions

a(6) corrected by Harvey P. Dale, Nov 09 2017
Showing 1-2 of 2 results.