A104133 Coefficient of x^(3n+1)/(3n+1)! in the Maclaurin expansion of the Dixon elliptic function sm(x,0).
1, -4, 160, -20800, 6476800, -3946624000, 4161608704000, -6974121256960000, 17455222222028800000, -62226770432344883200000, 304379186781653598208000000, -1982049657077223312916480000000, 16758824127564135479341219840000000
Offset: 0
Keywords
Examples
sm(w) = w - (1/6)*w^4 + (2/63)*w^7 - (13/2268)*w^10 + ...
References
- Oscar S. Adams, Elliptic Functions Applied to Conformal World Maps, Special Publication No. 112 of the U.S. Coast and Geodetic Survey, 1925. See p. 3.
- A. C. Dixon, On the doubly periodic functions arising out of the curve x^3 + y^3 - 3 alpha xy=1, Quart. J. Pure Appl. Math. 24 (1890), 167-233.
- E. van Fossen Conrad, Some continued fraction expansions of elliptic functions, PhD thesis, The Ohio State University, 2002.
Links
- R. Bacher and P. Flajolet, Pseudo-factorials, elliptic functions, and continued fractions, arXiv:0901.1379 [math.CA], 2009.
- P. Flajolet, Publications
- E. van Fossen Conrad and P. Flajolet, The Fermat cubic, elliptic functions, continued fractions and a combinatorial excursion, Sem. Lothar. Combin. 54 (2005/06), Art. B54g, 44 pp. Minor changes.
- Alessandro Gambini, Giorgio Nicoletti, and Daniele Ritelli, The Wallis Products for Fermat Curves, Vietnam J. Math. (2023).
- P. Lindqvist and J. Peetre, Two remarkable identities, called twos, for inverses to some Abelian integrals, Amer. Math. Monthly 108:5, 2001, 403-410.
- E. Lundberg, On hypergoniometric functions of complex variables (at Jaak Peetre's home page).
Crossrefs
Cf. A104134.
Programs
-
Maple
L:=proc(f) expand(x^2*diff(f,y)+y^2*diff(f,x)); end; Lit:=proc(f,m) if m=0 then f else L(Lit(f,m-1)) fi; end; seq(subs(x=0,y=1,Lit(x,3*j+1)),j=0..20);
-
Mathematica
nmax = 12; sm[z_] := 6*WeierstrassP[z, {0, 1/27}] / (1 - 3*WeierstrassPPrime[z, {0, 1/27}]); coes = CoefficientList[ Series[ sm[z], {z, 0, 3*nmax+1}], z]*Range[0, 3*nmax+1]!; a[n_] := coes[[3*n+2]]; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Sep 04 2012 *) a[ n_] := If[ n < 0, 0, With[ {m = 3 n + 1}, m! SeriesCoefficient[ 6 WeierstrassP[ x, {0, 1/27}] / (1 - 3 WeierstrassPPrime[ x, {0, 1/27}]), {x, 0, m}]] ]; (* Michael Somos, Jun 09 2015 *) m = 12; is = InverseSeries[Integrate[Normal[1/(1-x^3)^(2/3)+O[x]^(3m+2)], {x, 0, s}]+O[s]^(3m+2), s]; a[n_] := Coefficient[is, s^(3n+1)]*(3n+1)!; Table[a[n], {n, 0, m}] (* Jean-François Alcover, Aug 30 2015 *)
-
PARI
{a(n) = my(A, m); if( n<0, 0, A = O(x); for( i=0, n, A = intformal( (1 - intformal(A^2))^2) ); m = 3*n + 1; m! * polcoeff( A, m))}; /* Michael Somos, Aug 17 2007 */
Formula
G.f.: sm(u, 0).
E.g.f.: Sum_{k>=0} a(k) * x^(3*k + 1) / (3*k + 1)! = sm(x, 0). - Michael Somos, Aug 17 2007
G.f.: 1/T(0), where T(k) = 1 + 2*x*(3*k+1)*((3*k+1)^2+1) - x^2*(3*k+1)*(3*k+2)^2*(3*k+3)^2*(3*k+4)/T(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 01 2013
Extensions
Additional comments and more terms from Philippe Flajolet, Jul 09 2005
Entry revised by N. J. A. Sloane, Dec 02 2005, Aug 17 2007
Signs added by Michael Somos, Aug 17 2007
Comments