A153301 Coefficient of x^(4n+1)/(4n+1)! in the Maclaurin expansion of sm4(x), which is a generalization of the Dixon elliptic function sm(x,0) defined by A104133.
1, 18, 14364, 70203672, 1192064637456, 52269828456672288, 4930307288899134335424, 884135650165992118901204352, 275721138550891190637445080842496
Offset: 0
Keywords
Examples
G.f.: sm4(x) = x + 18*x^5/5! + 14364*x^9/9! + 70203672*x^13/13! + 1192064637456*x^17/17! +... cm4(x) = 1 + 6*x^4/4! + 2268*x^8/8! + 7434504*x^12/12! + 95227613712*x^16/16! +... These functions satisfy: cm4(x)^4 - sm4(x)^4 = 1 where: sm4(x)^4 = 24*x^4/4! + 24192*x^8/8! + 140507136*x^12/12! + 2716743794688*x^16/16! +... RELATED EXPANSIONS: sm4(x)^2 = 2*x^2/2! + 216*x^6/6! + 368928*x^10/10! + 3000945024*x^14/14! +... cm4(x)^2 = 1 + 12*x^4/4! + 7056*x^8/8! + 28340928*x^12/12! + 419025809664*x^16/16! +... sm4(x)^3 = 6*x^3/3! + 2268*x^7/7! + 7434504*x^11/11! + 95227613712*x^15/15! +... cm4(x)^3 = 1 + 18*x^4/4! + 14364*x^8/8! + 70203672*x^12/12! + 1192064637456*x^16/16! +... DERIVATIVES: d/dx sm4(x) = cm4(x)^3 ; d^2/dx^2 sm4(x) = 3*sm4(x)^3*cm4(x)^2 ; d^3/dx^3 sm4(x) = 6*sm4(x)^6*cm4(x) + 9*sm4(x)^2*cm4(x)^5 ; d^4/dx^4 sm4(x) = 6*sm4(x)^9 + 81*sm4(x)^5*cm4(x)^4 + 18*sm4(x)*cm4(x)^8 ;...
Links
- Alessandro Gambini, Giorgio Nicoletti, and Daniele Ritelli, The Wallis Products for Fermat Curves, Vietnam J. Math. (2023).
- Alessandro Gambini, Giorgio Nicoletti, and Daniele Ritelli, A Structural Approach to Gudermannian Functions, Results in Mathematics (2024) Vol. 79, Art. No. 10.
Programs
-
Mathematica
With[{n = 8}, CoefficientList[Series[JacobiSN[Sqrt[2] x^(1/4), 1/2]/(x^(1/4) Sqrt[2 JacobiCN[Sqrt[2] x^(1/4), 1/2]]), {x, 0, n}], x] Table[(4 k + 1)!, {k, 0, n}]] (* Jan Mangaldan, Jan 04 2017 *)
-
PARI
{a(n)=local(A);if(n<0,0,A=x*O(x);for(i=0,n,A=intformal((1+intformal(A^3))^3));n=4*n+1;n!*polcoeff(A,n))}
Formula
Define cm4(x)^4 = 1 + sm4(x)^4, where cm4(x) is the g.f. of A153300, then:
d/dx sm4(x) = cm4(x)^3 ;
d/dx cm4(x) = sm4(x)^3 .
Comments