A104141 Decimal expansion of 3/Pi^2.
3, 0, 3, 9, 6, 3, 5, 5, 0, 9, 2, 7, 0, 1, 3, 3, 1, 4, 3, 3, 1, 6, 3, 8, 3, 8, 9, 6, 2, 9, 1, 8, 2, 9, 1, 6, 7, 1, 3, 0, 7, 6, 3, 2, 4, 0, 1, 6, 7, 3, 9, 6, 4, 6, 5, 3, 6, 8, 2, 7, 0, 9, 5, 6, 8, 2, 5, 1, 9, 3, 6, 2, 8, 8, 6, 7, 0, 6, 3, 2, 3, 5, 7, 3, 6, 2, 7, 8, 2, 1, 7, 7, 6, 8, 6, 5, 5, 1, 2, 8
Offset: 0
Examples
3/Pi^2 = 0.303963550927013314331638389629...
References
- J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1995, p. 156.
- L. E. Dickson, History of the Theory of Numbers, Vol. I pp. 126 Chelsea NY 1966.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 184.
Links
- Eric Weisstein's World of Mathematics, Farey Sequence
- Joshua Zelinsky, Tau Numbers: A Partial Proof of a Conjecture and Other Results, Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.8.
- Index entries for transcendental numbers.
Crossrefs
Programs
-
Mathematica
l = RealDigits[N[3/Pi^2, 100]]; Prepend[First[l], Last[l]] (* Ryan Propper, Aug 04 2005 *)
-
PARI
3/Pi^2 \\ Charles R Greathouse IV, Mar 08 2013
Formula
Equals Sum_{n>=1} 1/A039956(n)^2. - Amiram Eldar, May 22 2020
From Terry D. Grant, Oct 31 2020: (Start)
Equals (-1)*zeta(0)/zeta(2).
Equals 1/(zeta(2)/2).
Equals 1/A195055.
Equals (1/2)*Sum_{k>=1} mu(k)/k^2. (End)
From Hugo Pfoertner, Apr 23 2024: (Start)
Equals A059956/2.
Equals A082020/5. (End)
Extensions
More terms from Ryan Propper, Aug 04 2005
Comments