cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104144 a(n) = Sum_{k=1..9} a(n-k); a(8) = 1, a(n) = 0 for n < 8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 1021, 2040, 4076, 8144, 16272, 32512, 64960, 129792, 259328, 518145, 1035269, 2068498, 4132920, 8257696, 16499120, 32965728, 65866496, 131603200, 262947072, 525375999, 1049716729, 2097364960
Offset: 0

Views

Author

Jean Lefort (jlefort.apmep(AT)wanadoo.fr), Mar 07 2005

Keywords

Comments

Sometimes called the Fibonacci 9-step numbers.
For n >= 8, this gives the number of integers written without 0 in base ten, the sum of digits of which is equal to n-7. E.g., a(11) = 8 because we have the 8 numbers: 4, 13, 22, 31, 112, 121, 211, 1111.
The offset for this sequence is fairly arbitrary. - N. J. A. Sloane, Feb 27 2009

Crossrefs

Cf. A000045, A000073, A000078, A001591, A001592, A066178, A079262 (Fibonacci n-step numbers).
Cf. A255529 (Indices of primes in this sequence).

Programs

  • Maple
    for n from 0 to 50 do k(n):=sum((-1)^i*binomial(n-8-9*i,i)*2^(n-8-10*i),i=0..floor((n-8)/10))-sum((-1)^i*binomial(n-9-9*i,i)*2^(n-9-10*i),i=0..floor((n-9)/10)):od:seq(k(n),n=0..50);a:=taylor((z^8-z^9)/(1-2*z+z^(10)),z=0,51);for p from 0 to 50 do j(p):=coeff(a,z,p):od :seq(j(p),p=0..50); # Richard Choulet, Feb 22 2010
  • Mathematica
    a={1, 0, 0, 0, 0, 0, 0, 0, 0}; Table[s=Plus@@a; a=RotateLeft[a]; a[[ -1]]=s, {n, 50}]
    LinearRecurrence[{1, 1, 1, 1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 1}, 50] (* Vladimir Joseph Stephan Orlovsky, May 25 2011 *)
    With[{nn=9},LinearRecurrence[Table[1,{nn}],Join[Table[0,{nn-1}],{1}],50]] (* Harvey P. Dale, Aug 17 2013 *)
  • PARI
    a(n)=([0,1,0,0,0,0,0,0,0; 0,0,1,0,0,0,0,0,0; 0,0,0,1,0,0,0,0,0; 0,0,0,0,1,0,0,0,0; 0,0,0,0,0,1,0,0,0; 0,0,0,0,0,0,1,0,0; 0,0,0,0,0,0,0,1,0; 0,0,0,0,0,0,0,0,1; 1,1,1,1,1,1,1,1,1]^n*[0;0;0;0;0;0;0;0;1])[1,1] \\ Charles R Greathouse IV, Jun 16 2015
    
  • PARI
    A104144(n,m=9)=(matrix(m,m,i,j,j==i+1||i==m)^n)[1,m] \\ M. F. Hasler, Apr 22 2018

Formula

a(n) = Sum_{k=1..9} a(n-k) for n > 8, a(8) = 1, a(n) = 0 for n=0..7.
G.f.: x^8/(1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9). - N. J. A. Sloane, Dec 04 2011
Another form of the g.f. f: f(z) = (z^8-z^9)/(1-2*z+z^(10)), then a(n) = Sum_((-1)^i*binomial(n-8-9*i,i)*2^(n-8-10*i), i=0..floor((n-8)/10))-Sum_((-1)^i*binomial(n-9-9*i,i)*2^(n-9-10*i), i=0..floor((n-9)/10)) with Sum_(alpha(i), i=m..n)=0 for m>n. - Richard Choulet, Feb 22 2010
From N. J. A. Sloane, Dec 04 2011: (Start)
Let b be the smallest root (in magnitude) of g(x) := 1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9, b = 0.50049311828655225605926845999420216157202861343888...
Let c = -b^8/g'(b) = 0.00099310812055463178382193226558248643030626601288701...
Then a(n) is the nearest integer to c/b^n. (End)

Extensions

Edited by N. J. A. Sloane, Aug 15 2006 and Nov 11 2006
Incorrect formula deleted by N. J. A. Sloane, Dec 04 2011
Name edited by M. F. Hasler, Apr 22 2018