A104209 Number of labeled directed multigraphs with n arrows and no vertex of degree 0.
1, 3, 39, 819, 23949, 898947, 41212155, 2232057171, 139455901101, 9873341493231, 781184921112075, 68309191570851759, 6541702440222052137, 680922615974259589527, 76544749927261960908807, 9241807764375868372683255, 1192762017796744530286451865
Offset: 0
Keywords
Examples
a(1)=3, the three graphs being (1 -> 2), (2 -> 1) and (1 -> 1).
Links
- J.-C. Novelli, J.-Y. Thibon and N. M. Thiéry, Algèbres de Hopf de graphes [Hopf algebras of graphs], C.R. Acad. Sci. Paris (Comptes Rendus Mathématique), 339 (2004), 607-610.
Programs
-
Maple
d:=proc(n) local m;sum(binomial(m^2+n-1,n)/2^(m+1),m=0..infinity);end;
-
Mathematica
f[n_] := Sum[ Binomial[m^2 + n - 1, n]/2^(m + 1), {m, 0, Infinity}]; Table[ f[n], {n, 0, 15}] (* Robert G. Wilson v, Mar 16 2005 *) Table[Sum[Sum[(-1)^(k-j)*Binomial[k,j]*Binomial[j^2+n-1,n],{j,0,k}],{k,0,2*n}],{n,0,20}] (* Vaclav Kotesovec, May 03 2015, much faster *)
Formula
a(n) = Sum_{m >=0} binomial(m^2+n-1, n)/2^(m+1).
G.f.: Sum_{m >= 0} (1-x)^(-m^2)/2^(m+1). Row sums of A120945. - Vladeta Jovovic, Sep 25 2006
a(n) ~ c * 2^(2*n) * n! / (sqrt(n) * (log(2))^(2*n)), where c = 0.432167265869761794333243584356866417673557873163120324347... = 2^(log(2)/8 - 1) / (sqrt(Pi) * log(2)). - Vaclav Kotesovec, May 03 2015, updated Mar 21 2018
Extensions
Corrected and extended by Robert G. Wilson v, Mar 16 2005
Offset corrected by Vaclav Kotesovec, May 03 2015
Comments