A104272 Ramanujan primes R_n: a(n) is the smallest number such that if x >= a(n), then pi(x) - pi(x/2) >= n, where pi(x) is the number of primes <= x.
2, 11, 17, 29, 41, 47, 59, 67, 71, 97, 101, 107, 127, 149, 151, 167, 179, 181, 227, 229, 233, 239, 241, 263, 269, 281, 307, 311, 347, 349, 367, 373, 401, 409, 419, 431, 433, 439, 461, 487, 491, 503, 569, 571, 587, 593, 599, 601, 607, 641, 643, 647, 653, 659
Offset: 1
Examples
a(1) = 2 is Bertrand's postulate: pi(x) - pi(x/2) >= 1 for all x >= 2. a(2) = 11 because a(2) < 8 log 8 < 17 and pi(n) - pi(n/2) > 1 for n = 16, 15, ..., 11 but pi(10) - pi(5) = 1. Consider a(9)=71. Then the nearest prime > 71/2 is 37, and between a(9) and 2*37, that is, between 71 and 74, there exists a prime (73). - _Vladimir Shevelev_, Aug 14 2009 [corrected by _Jonathan Sondow_, Jun 17 2013]
References
- Srinivasa Ramanujan, Collected Papers of Srinivasa Ramanujan (Ed. G. H. Hardy, S. Aiyar, P. Venkatesvara and B. M. Wilson), Amer. Math. Soc., Providence, 2000, pp. 208-209.
- Harold N. Shapiro, Ramanujan's idea, Section 9.3B in Introduction to the Theory of Numbers, Dover, 2008.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, and Jonathan Sondow, Generalized Ramanujan primes, arXiv:1108.0475 [math.NT], 2011.
- N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, and Jonathan Sondow, Generalized Ramanujan primes, Combinatorial and Additive Number Theory, Springer Proc. in Math. & Stat., CANT 2011 and 2012, Vol. 101 (2014), 1-13.
- Christian Axler, Über die Primzahl-Zählfunktion, die n-te Primzahl und verallgemeinerte Ramanujan-Primzahlen, Ph.D. thesis 2013, in German, English summary.
- Christian Axler, On generalized Ramanujan primes, arXiv:1401.7179 [math.NT], 2014.
- Christian Axler, On generalized Ramanujan primes, Ramanujan J. 39 (1) (2016) 1-30.
- Christian Axler and Thomas Leßmann, An explicit upper bound for the first k-Ramanujan prime, arXiv:1504.05485 [math.NT], 2015.
- Christian Axler and Thomas Leßmann, On the first k-Ramanujan prime, Amer. Math. Monthly, 124 (2017), 642-646.
- Adam H. Berliner, N. Dean, J. Hook, A. Marr, A. Mbirika, and C. McBee, Coprime and prime labelings of graphs, arXiv preprint arXiv:1604.07698 [math.CO], 2016; Journal of Integer Sequences, Vol. 19 (2016), #16.5.8.
- Paul Erdős, A theorem of Sylvester and Schur, J. London Math. Soc., 9 (1934), 282-288.
- Peter Hegarty, Why should one expect to find long runs of (non)-Ramanujan primes?, arXiv:1201.3847 [math.NT], 2012.
- Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
- Shanta Laishram, On a conjecture on Ramanujan primes, Int. J. Number Theory, 6 (2010), 1869-1873.
- Catherine Lee, Minimum coprime graph labelings, arXiv:1907.12670 [math.CO], 2019.
- Jaban Meher and M. Ram Murty, Ramanujan's proof of Bertrand's postulate, Amer. Math. Monthly, Vol. 120, No. 7 (2013), pp. 650-653.
- Alexander Okhotin, Unambiguous finite automata over a unary alphabet, Inf. Comput., 212 (2012), 15-36.
- Murat Baris Paksoy, Derived Ramanujan primes: R'_n, arXiv:1210.6991 [math.NT], 2012.
- PlanetMath, Ramanujan prime
- Srinivasa Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc., 11 (1919), 181-182.
- Juan Matias Sepulcre and Tomás Vidal, On the non-isolation of the real projections of the zeros of exponential polynomials, J. Math. Anal. Appl., 437 (2016) No. 1, 513-525.
- Vladimir Shevelev, On critical small intervals containing primes, arXiv:0908.2319 [math.NT], 2009.
- Vladimir Shevelev, Ramanujan and Labos primes, their generalizations and classifications of primes, arXiv:0909.0715 [math.NT], 2009-2011.
- Vladimir Shevelev, Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq. 15 (2012) Article 12.5.4
- Vladimir Shevelev, Charles R. Greathouse IV, and Peter J. C. Moses, On intervals (kn, (k+1)n) containing a prime for all n>1, Journal of Integer Sequences, Vol. 16 (2013), Article 13.7.3. arXiv:1212.2785
- Jonathan Sondow, Ramanujan primes and Bertrand's postulate, arXiv:0907.5232 [math.NT], 2009-2010.
- Jonathan Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly, 116 (2009), 630-635. Zentralblatt review.
- Jonathan Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, arXiv:1105.2249 [math.NT] 2011; J. Integer Seq. 14 (2011) Article 11.6.2.
- Jonathan Sondow, Ramanujan Prime, Eric Weisstein's MathWorld.
- Jonathan Sondow and Eric Weisstein, Bertrand's Postulate, MathWorld.
- Anitha Srinivasan, An upper bound for Ramanujan primes, Integers, 14 (2014), #A19.
- Anitha Srinivasan and John W. Nicholson, An improved upper bound for Ramanujan primes, Integers, 15 (2015), #A52.
- Wikipedia, Bertrand's postulate.
- Wikipedia, Ramanujan prime.
- Shichun Yang and Alain Togbé, On the estimates of the upper and lower bounds of Ramanujan primes, Ramanujan J., online 14 August 2015, 1-11.
Crossrefs
Cf. A000720, A007053, A014085, A060715, A084139, A084140, A143223, A143224, A143225, A143226, A143227, A080360, A080359, A164368, A164288, A164554, A164333, A164294, A164371, A190303.
Cf. A162996 (Round(kn * (log(kn)+1)), with k = 2.216 as an approximation of R_n = n-th Ramanujan Prime).
Cf. A163160 (Round(kn * (log(kn)+1)) - R_n, where k = 2.216 and R_n = n-th Ramanujan prime).
Cf. A178127 (Lesser of twin Ramanujan primes), A178128 (Lesser of twin primes if it is a Ramanujan prime).
Cf. A181671 (number of Ramanujan primes less than 10^n).
Cf. A190124 (constant of summation: 1/a(n)^2).
Cf. A190413, A190414, A212493, A212541, A233739, A233822, A277718, A277719, A164952, A290394, A291465.
Not to be confused with the Ramanujan numbers or Ramanujan tau function, A000594.
Programs
-
Maple
A104272 := proc(n::integer) local R; if n = 1 then return 2; end if; R := ithprime(3*n-1) ; # upper limit Laishram's thrm Thrm 3 arXiv:1105.2249 while true do if A056171(R) = n then # Defn. 1. of Shevelev JIS 14 (2012) 12.1.1 return R ; end if; R := prevprime(R) ; end do: end proc: seq(A104272(n),n=1..200) ; # slow downstream search <= p(3n-1) R. J. Mathar, Sep 21 2017
-
Mathematica
(RamanujanPrimeList[n_] := With[{T=Table[{k,PrimePi[k]-PrimePi[k/2]}, {k,Ceiling[N[4*n*Log[4*n]]]}]}, Table[1+First[Last[Select[T,Last[ # ]==i-1&]]],{i,1,n}]]; RamanujanPrimeList[54]) (* Jonathan Sondow, Aug 15 2009 *) (FasterRamanujanPrimeList[n_] := With[{T=Table[{k,PrimePi[k]-PrimePi[k/2]}, {k,Prime[3*n]}]}, Table[1+First[Last[Select[T,Last[ # ]==i-1&]]],{i,1,n}]]; FasterRamanujanPrimeList[54]) nn=1000; R=Table[0,{nn}]; s=0; Do[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s--]; If[s
T. D. Noe, Nov 15 2010 *) -
PARI
ramanujan_prime_list(n) = {my(L=vector(n), s=0, k=1); for(k=1, prime(3*n)-1, if(isprime(k), s++); if(k%2==0 && isprime(k/2), s--); if(s
Satish Bysany, Mar 02 2017 -
Perl
use ntheory ":all"; my $r = ramanujan_primes(1000); say "[@$r]"; # Dana Jacobsen, Sep 06 2015
Formula
a(n) = 1 + max{k: pi(k) - pi(k/2) = n - 1}.
a(n) = A080360(n-1) + 1 for n > 1.
a(n) >= A080359(n). - Vladimir Shevelev, Aug 20 2009
a(n) = 2*A084140(n) - 1, for n > 1. - Jonathan Sondow, Dec 21 2012
a(n) = max{prime p: pi(p) - pi(p/2) = n} (see Shevelev 2012). - Jonathan Sondow, Mar 23 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = A190303. - Amiram Eldar, Nov 20 2020
Comments