A104324 The Fibonacci word over the nonnegative integers; or, the number of runs of identical bits in the binary Zeckendorf representation of n.
0, 1, 2, 2, 3, 2, 3, 4, 2, 3, 4, 4, 5, 2, 3, 4, 4, 5, 4, 5, 6, 2, 3, 4, 4, 5, 4, 5, 6, 4, 5, 6, 6, 7, 2, 3, 4, 4, 5, 4, 5, 6, 4, 5, 6, 6, 7, 4, 5, 6, 6, 7, 6, 7, 8, 2, 3, 4, 4, 5, 4, 5, 6, 4, 5, 6, 6, 7, 4, 5, 6, 6, 7, 6, 7, 8, 4, 5, 6, 6, 7, 6, 7, 8, 6, 7, 8, 8, 9, 2, 3, 4, 4, 5, 4, 5, 6, 4, 5, 6, 6, 7, 4, 5, 6, 6
Offset: 0
Examples
14 = 13+1 as a sum of Fibonacci numbers = 100001(in Fibonacci base) using the least number of 1's (Zeckendorf Rep): it consists of 3 runs: one 1, four 0's, one 1, so a(14)=3. This sequence may be broken up into blocks of lengths 1,1,2,3,5,8,... (the nonzero Fibonacci numbers). The first occurrence of a number indicates the start of a new block. The first few blocks are: 0, 1, 2,2, 3,2,3, 4,2,3,4,4, 5,2,3,4,4,5,4,5, 6,2,3,4,4,5,4,5,6,4,5,6,6, 7,2,3,4,4,5,4,5,6,4,5,6,6,7,4,5,6,6,7,6,7, 8,2,3,4,4,5,4,5,6,4,5,6,6,7,4,5,6,6,7,6,7,8,4,5,6,6,7,6,7,8,6,7,8,8, ... (see also A288576). - _N. J. A. Sloane_, Jun 30 2017
References
- E. Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41, 179-182, 1972.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..28656 [First 10000 terms from Reinhard Zumkeller]
- Amy Glen, Jamie Simpson, and W. F. Smyth, More properties of the Fibonacci word on an infinite alphabet, arXiv:1710.02782 [math.CO], 2017.
- Ron Knott, Using Fibonacci Numbers to Represent Whole Numbers
- Casey Mongoven, Sonification of multiple Fibonacci-related sequences, Annales Mathematicae et Informaticae, 41 (2013) pp. 175-192.
- Jiemeng Zhang, Zhixiong Wen, and Wen Wu, Some Properties of the Fibonacci Sequence on an Infinite Alphabet, Electronic Journal of Combinatorics, 24(2) (2017), #P2.52.
Crossrefs
Programs
-
Haskell
import Data.List (group) a104324 = length . map length . group . a213676_row -- Reinhard Zumkeller, Mar 10 2013
-
Maple
with(combinat,fibonacci):fib:=fibonacci: zeckrep:=proc(N)local i,z,j,n;i:=2;z:=NULL;n:=N; while fib(i)<=n do i:=i+1 od;print(i=fib(i)); for j from i-1 by -1 to 2 do if n>=fib(j) then z:=z,1;n:=n-fib(j) else z:=z,0 fi od; [z] end proc: countruns:=proc(s)local i,c,elt;elt:=s[1];c:=1; for i from 2 to nops(s) do if s[i]<>s[i-1] then c:=c+1 fi od; c end proc: seq(countruns(zeckrep(n)),n=1..100);
-
Mathematica
f[n_Integer] := Block[{k = Ceiling[ Log[ GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k-- ]; While[ fr[[1]] == 0, fr = Rest@fr]; Length@ Split@ fr]; Array[f, 105] (* Robert G. Wilson v, Apr 25 2006 *) Nest[ReplaceAll[#, {t_ /; EvenQ[t] :> Sequence[t, t+1], t_ /; OddQ[t] :> t+1}] &, {0}, 10] (* Paolo Xausa, Apr 05 2024 *)
-
PARI
phi(n) = if (n%2, n+1, [n, n+1]); vphi(v) = nv = []; for (k=1, #v, nv = concat(nv, phi(v[k]));); nv; lista(nn) = {v = [0]; for (i=1, nn, v = vphi(v);); v;} \\ Michel Marcus, Oct 10 2017
Formula
Extensions
Entry revised by N. J. A. Sloane, Jun 30 2017
Comments