cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A279213 Primes formed by concatenating n with n-3.

Original entry on oeis.org

41, 107, 1613, 2017, 3229, 4441, 4643, 5653, 7673, 9491, 106103, 116113, 124121, 130127, 136133, 170167, 172169, 182179, 184181, 196193, 206203, 212209, 214211, 220217, 224221, 230227, 272269, 274271, 280277, 302299, 304301, 320317, 322319, 326323, 334331
Offset: 1

Views

Author

Vincenzo Librandi, Dec 08 2016

Keywords

Examples

			For n = 16, n-3 = 13. Concatenating 16 and 13 gives 1613 which is a prime. So, 1613 is in the sequence. - _Indranil Ghosh_, Jan 23 2017
		

Crossrefs

Programs

  • Magma
    [m: n in [4..400 by 2] | IsPrime(m) where m is Seqint(Intseq(n-3) cat Intseq(n))];
    
  • Mathematica
    Select[Table[FromDigits[Join[Flatten[IntegerDigits[{n, n -3}]]]], {n, 400}], PrimeQ]
  • PARI
    terms(n) = my(i=0, k=3); while(i < n, my(x=eval(Str(k, k-3))); if(ispseudoprime(x), print1(x, ", "); i++); k++)
    /* Print initial 35 terms as follows: */
    terms(35) \\ Felix Fröhlich, Jan 23 2017
  • Python
    from sympy import isprime
    i=4
    j=1
    while j<=10000:
        if isprime(int(str(i)+str(i-3)))==True:
            print(str(j)+" "+str(i)+str(i-3))
            j+=1
        i+=1 # Indranil Ghosh, Jan 23 2017
    
Showing 1-1 of 1 results.