A104350 Partial products of largest prime factors of numbers <= n.
1, 2, 6, 12, 60, 180, 1260, 2520, 7560, 37800, 415800, 1247400, 16216200, 113513400, 567567000, 1135134000, 19297278000, 57891834000, 1099944846000, 5499724230000, 38498069610000, 423478765710000, 9740011611330000
Offset: 1
Keywords
References
- Gérald Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Publ. Inst. Elie Cartan, Vol. 13, Nancy, 1990.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..641
- Romeo Meštrović, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint, arXiv:1202.3670 [math.HO], 2012-2018.
- Eric Weisstein's World of Mathematics, Greatest Prime Factor.
- Reinhard Zumkeller, Products of largest prime factors of numbers <= n.
Crossrefs
Programs
-
Haskell
a104350 n = a104350_list !! (n-1) a104350_list = scanl1 (*) a006530_list -- Reinhard Zumkeller, Apr 10 2014
-
Mathematica
A104350[n_] := Product[FactorInteger[k][[-1, 1]], {k, 1, n}]; Table[A104350[n], {n, 30}] (* G. C. Greubel, May 09 2017 *) FoldList[Times,Table[FactorInteger[n][[-1,1]],{n,30}]] (* Harvey P. Dale, May 25 2023 *)
-
PARI
gpf(n)=my(f=factor(n)[,1]); f[#f] a(n)=prod(i=2,n,gpf(i)) \\ Charles R Greathouse IV, Apr 29 2015
-
PARI
first(n)=my(v=vector(n,i,1)); forfactored(k=2,n, v[k[1]]=v[k[1]-1]*vecmax(k[2][,1])); v \\ Charles R Greathouse IV, May 10 2017
Formula
log(a(n)) = c * n * log(n) + c * (1-gamma) * n + O(n * exp(-log(n)^(3/8-eps))), where c is the Golomb-Dickman constant (A084945) and gamma is Euler's constant (A001620) (Tenenbaum, 1990). - Amiram Eldar, May 21 2021
Extensions
More terms from David Wasserman, Apr 24 2008
Comments