cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104350 Partial products of largest prime factors of numbers <= n.

Original entry on oeis.org

1, 2, 6, 12, 60, 180, 1260, 2520, 7560, 37800, 415800, 1247400, 16216200, 113513400, 567567000, 1135134000, 19297278000, 57891834000, 1099944846000, 5499724230000, 38498069610000, 423478765710000, 9740011611330000
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Comments

Partial Products of A006530: a(n) = Product_{k=1..n} A006530(k).
a(n) = a(n-1)*A006530(n) for n>1, a(1) = 1;
A020639(a(n)) = A040000(n-1), A006530(a(n)) = A007917(n) for n>1.
A001221(a(n)) = A000720(n), A001222(a(n)) = A001477(n-1).
A007947(a(n)) = A034386(n).
a(n) = A000142(n) / A076928(n). [Corrected by Franklin T. Adams-Watters, Oct 30 2006]
In decimal representation: A104351(n) = number of digits of a(n), A104355(n) = number of trailing zeros of a(n).
A104357(n) = a(n) - 1, A104365(n) = a(n) + 1.

References

  • Gérald Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Publ. Inst. Elie Cartan, Vol. 13, Nancy, 1990.

Crossrefs

Programs

  • Haskell
    a104350 n = a104350_list !! (n-1)
    a104350_list = scanl1 (*) a006530_list
    -- Reinhard Zumkeller, Apr 10 2014
    
  • Mathematica
    A104350[n_] := Product[FactorInteger[k][[-1, 1]], {k, 1, n}]; Table[A104350[n], {n, 30}] (* G. C. Greubel, May 09 2017 *)
    FoldList[Times,Table[FactorInteger[n][[-1,1]],{n,30}]] (* Harvey P. Dale, May 25 2023 *)
  • PARI
    gpf(n)=my(f=factor(n)[,1]); f[#f]
    a(n)=prod(i=2,n,gpf(i)) \\ Charles R Greathouse IV, Apr 29 2015
    
  • PARI
    first(n)=my(v=vector(n,i,1)); forfactored(k=2,n, v[k[1]]=v[k[1]-1]*vecmax(k[2][,1])); v \\ Charles R Greathouse IV, May 10 2017

Formula

log(a(n)) = c * n * log(n) + c * (1-gamma) * n + O(n * exp(-log(n)^(3/8-eps))), where c is the Golomb-Dickman constant (A084945) and gamma is Euler's constant (A001620) (Tenenbaum, 1990). - Amiram Eldar, May 21 2021

Extensions

More terms from David Wasserman, Apr 24 2008