A104392 Sums of 2 distinct positive pentatope numbers (A000332).
6, 16, 20, 36, 40, 50, 71, 75, 85, 105, 127, 131, 141, 161, 196, 211, 215, 225, 245, 280, 331, 335, 336, 345, 365, 400, 456, 496, 500, 510, 530, 540, 565, 621, 705, 716, 720, 730, 750, 785, 825, 841, 925, 1002, 1006, 1016, 1036, 1045, 1071, 1127
Offset: 0
References
- Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 55-57, 1996.
Links
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
- J. V. Post, Table of Polytope Numbers, Sorted, Through 1,000,000.
- Eric Weisstein's World of Mathematics, Pentatope Number.
Programs
-
Mathematica
nn=15; Select[Union[Total/@Subsets[Binomial[Range[4,nn],4],{2}]], #
Harvey P. Dale, Mar 13 2011 *)
Formula
a(n) = Ptop(i) + Ptop(j) for some positive i=/=j and Ptop(n) = binomial(n+3,4).
Extensions
Extended by Ray Chandler, Mar 05 2005
Comments